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CHAPTER I. INTRODUCTION 

The marketing decision faced by farmers each fall is important 

in determining the farmers' incomes. At the time of harvest each 

farmer is faced with a decision whether to sell his grain at that time 

or to store it for some period of time with the possibility that he 

can increase his income by doing so. If he markets his grain at the 

"right" time, he stands to improve his financial condition, sometimes 

considerably. This is evidenced by an example from the 1972-73 

marketing season. The Iowa average price of soybeans at harvest time 

in October of 1972 was $3.06 per bushel but by the following June the 

price had risen to an amazing $10.10 per bushel. In this instance, 

the time of marketing was extremely important. The farmers who held 

their soybeans until June made a gross gain due to marketing of 

$7 . 04/bushel - considerably more than enough to offset any additional 

costs they may have incurred. Certainly, this is an extreme example 

which quite probably could not have been foreseen ahead of time but 

it does show that the farmer's income is not entirely dependent upon 

his production decision. 

It was mentioned previously that the marketing decision was 

based on the possibility of increasing farm revenues due to higher 

commodity prices at some point later in the marketing season. (It is 

assumed here that the farmer will market his grain prior to the next 

year's harvest. The time between successive harvests, then, is 

defined to be the "marketing season".) It is imperative that we 

stress the word "possibility" in the above statement for it is what 
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lies at the crux of the matter. 

If future prices were known with certainty, the marketing 

decision would pose no problem. Each farmer could compute his costs 

of storage and his opportunity costs for varying lengths of time 

and then choose to market his commodities at the time which would 

maximize his net gain . Certain knowledge of future prices is not 

the case, however. Farmers are faced with a competitive market for 

their commodities in which prices fluctuate due to the varying forces 

of s upply and demand. It has been shown (Gonzalez-Mendez [10]) that 

these price fluctuations take place randomly around a value of 

central tendency. This value of central tendency is what Gonzales-

Mendez (G-M) has labelled the break-even price (hep). It is a price 

which is based on the cash price at harvest time and which incorporates 

the farmer's opportunity and storage costs. It is, in essence , a 

price which will leave the farmer indifferent between selling his 

grain at harvest time at price p or selling it i periods later at 
0 

price pi = bep .. 
1 

This simplifies the farmer's decision somewhat 

because he can now compare his expectations of future prices to the 

break-even prices. If he expects future cash prices to exceed his 

break-even price, then he will choose to store his grain in order to 

increase his income. If he expects cash prices at all points in the 

future to fall below the break-even price he will market his grain 

immediately. 

These criteria for selection of the proper marketing strategy may 

or may not be valid depending upon the farmer's risk preference. It 

is inevitable that forecasting further into the future will yield 
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riskier forecasts and this greater riskiness may well affect the 

farmer ' s marketing decision. The problem with many decision making 

models that include risk in their specification, however , is that 

they often become too cumbersome to be put to practical use by 

many businesses. If this is the case , selection of a risk-return 

model may produce theoretically sound results which, due to their 

compl exity, are never put to practical use by the farmer. This 

brings us to the objective of this thesis. 

A plethora of models have been advanced to deal with the problem 

of decisions under uncertainty and several of these are discussed 

within the body of this paper. The decision maker is faced with 

several models to choose from. There is a tradeoff of sorts between 

the models not unlike the risk-return tradeoff. Some models, though 

very thorough theoretically, involve massive amounts of computation 

which the farmer is either unwilling or unable to undertake. In many 

cases, they involve the use of complex mathematical designs which can 

only be solved with the aid of a computer. It is quite probable that 

most farm operators do not have access to facilities necessary to 

put these models to use. On the other hand, the farmer can make 

use of some very simplified models which require little computation. 

In most cases, however, these models are lacking theoretical justifica-

tion and often produce unreliable results. 

The problem that will be addressed in this thesis is how to 

construct a model which will yield reliable results with a minimum 

amount of computational effort. The work of G-M will be used as a 
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basis from which a model reflecting sound economic analysis will be 

constructed in the form of some simple rules of thumb. 
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CHAPTER II. REVIEW OF LITERATURE 

Linear Prograrmning Techniques 

Linear programming (LP) is a mathematical model design whereby 

an i ndividual can op timize a linear objective func tion which is 

s ubj ect to linear constraints. The technique is employed extensively 

in agriculture, business, economics and elsewhere due to its relative 

ease of use . The rudiments of LP are discussed widely in the 

literature and will not be examined here. Let it suffice to say 

that the main advantage of LP over other model designs (e.g., 

quadratic programming) is its ease of computation. This is due to 

the introduction of the simplex method by Dantzig [17] which i s 

readily programmed into the computer and which allows for fast and 

efficient determination of the LP instrument variables. The major 

drawback to LP is the fact that many problems cannot be described 

using only linear expressions. The game theory, maximum admissible 

loss and MOTAD models discussed hereafter are all linear in nature 

and draw upon LP in one way or another. 

Game Theory Techniques 

Game theory techniques have been widely used in agricultural 

decision making . In this context, game theory has dealt with "games 

against nature," i.e . , the farmer ' s adversary is his own physical 

environment. The "game" placed before him is a decision as to which 

* action, a , to undertake from among n such actions, a1 , a 2 , ... ' a . n 

Uncertainty enters the decision-making process when it becomes clear 
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that the farmer 's actions will result in different outcomes depending 

on the existing state of nature, sj . The action chosen is dependent 

upon the goals of the individual decision maker. Specific game 

theories address themselves to the differing goals which confront the 

decision maker . 

The Wald {33] maximin criterion specifies as its optimal action 

that action which will lead to the maximum minimum payoff . This 

simply means that, given all possible states of nature, the algorithm 

will choose the action which has the largest minimum payoff . While 

this criterion will not lead to a profit maximization, per se, it 

will set a floor on the payoff to be received by the decision maker. 

It is, therefore, a technique which is quite useful to those 

individuals who must maintain some minimum income level in order to 

stay in business. 

Another game theory technique is embodied in the Savage {25] 

regret criterion. It operates on the assumption that individuals 

attempt to minimize "regret". For each state of nature, the difference 

between the payoff for any given action and the maximum possible pay-

off is computed . These differences are defined as being the regret 

felt as a result of not choosing the optimum ai for the existing sj . 

The criterion here is to choose that action which minimizes the 

maximum regret over all states of nature. 

The Hurwicz [14] pessimism-optimism criterion is basically an 

extension of the Wald approach but allows the decision-maker to 

subjectively assign probabilities to the occurrence of various states 
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of nature. The individual assigns a number, bi (0 ~bi 5 1), to each 

action to represent his belief that the worst possible state of nature 

for that action will occur. This number is his "pessimism index". 

The individual's "optimism index" is then (1 - bi). The "bi index" 

for any given action, a., is then computed as 
l. 

(2 .1) 

where 

b. index 
1 

mi = minimum payoff for action a1 over all states of nature, 

Mi maximum payoff for action ai over all states of nature . 

The optimal Hurwicz action is chosen as the action which maximizes the 

bi index. It is evident that if bi = 1 then the solution is equivalent 

to that obtained using the Wald criterion. Problems arise in this 

technique because of the very subjective nature of assigning numeric 

value to the b. ' s . 
1 

The final game theory technique to be considered here is the 

Laplace [27] criterion. It is based on the assumption that the 

decision-maker is completely ignorant of the probabilities of different 

states of nature. This allows him to assign equal probabilities to 

every s .• The expected outcome, based on these probabilities, of each 
.J 

action is then computed and the action with the largest expected 

outcome is chosen as the optimal strategy. This model has sometimes 

been referred to as the "naive model" since it assumes no knowledge 

concerning possible states of nature. If any information is available, 

then it is obvious that the results of this technique do not constitute 
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the best strategy open to the decision-maker. 

The game theories cited in the literature have been used quite 

extensively because of the relative ease in using them. The principles 

underlying them are straightforward and the computations involved in 

reaching a decision are all linear. These techniques suffer, however, 

from at least two major drawbacks. First, most of the game theories 

(as used in agriculture) are based on the assumption that nature is 

malevolent . That nature is consciously attempting to do its worst 

seems to be a rather far-fetched assumption. Second, the game theory 

models rely quite heavily on subjective data . Forming a Hurwicz 

pessimism index, for example, involves trying to quantify a great 

deal of subjective, as well as objective, information into a single 

number - a task which is difficult at best . 

Maximum Admissible Loss Approach 

Boussard [ 3 ] and Boussard and Petit [ 4 ] have developed a linear 

model which could be considered a "safety-first" model. The idea is 

to maximize farm revenues subject to a minimum acceptable income. The 

model defines a "maximum adr-1issible loss", L, as the difference 

between expected income and the minimum income needed to finance a 

"bare bones " consumption . This comprises the first safety constraint 

and can be written as 

(2 . 2) L = E - MINI 

where 

E the income function to be maximized, 
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MINI the minimum income necessary to meet basic consumption 

levels. 

The remaining constraints involve the individual activities. A 

"possible unitary loss" for activity i, FLi' is defined as the 

difference between expected income for that activity, E(ai), and the 

income that would be obtained if the most unfavorable of conditions 

prevailed. The assumption of the model is that the activity safety 

constraints will be satisfied if an activity's focal loss, FLixi, 

does not exceed a specified fraction, l/K, of the maximum admissible 

loss. (The value of K is dependent upon the distribution of activity 

incomes . Boussard and Petit [ 4] have shown that when net revenues 

per unit are normally distributed K2 * n is a reasonable approximation 

* where n is the number of activities in the optimal plan. This, of 

* course, poses a problem in that n isn't known until the system is 

* solved although we do know that n ~number of constraints . ) 

The activity safety constraints are then set up as 

where 

x . = level of activity i. 
1 

i=l,2, ... ,n 

If the activity incomes can be assumed to be independently normally 

distr ibuted, Kennedy and Francisco [15] have shown that these 

constraints effectively restrict the chance that total income will 

fall below MINI to a maximum probability determined by the decision 

maker. 

This approach is somewhat of a "black box" approach in that some 
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of the underlying assumptions of the model are debatable. 

"This [model] rests on hypotheses that are more or 
less debatable, as has been seen. Thus, there can be no 
question of basing on these hypotheses the conclusions 
that can be drawn from it. Hence, these conclusions must 
rest on the forecasting value of the model - that is to 
say, on its ability to provide results which, under given 
conditions, reproduce to a reasonable approximation, the 
behavior of the farmers placed under these conditions" [3] . 

In defense of the technique, at least one of these assumptions - that 

the variance of activity incomes are independent of the levels of 

chosen activities - has been discarded with no pronounced effect on 

the results [15]. Some of the other assumptions still remain in 

question, however. For example, the assumption of independence 

between activity incomes is certainly open to debate. Another problem 

arises in selection of the possible unitary losses. How the farmer 

decides what his income will be if nature does its worst is difficult 

to determine empirically because he has no way of deciding what 

"nature's worst" really is. 

Minimization of Total Absolute Deviations Model 

The minimization of total absolute deviations (MOTAD) model has 

been constructed by Hazell (13) as an alternative to the E-V quadratic 

models normally postulated. The specification of the model allows 

solutions to be obtained using standard LP algorithms. Instead of 

determining an efficient E-V frontier, MOTAD derives an efficient 

expected income - mean absolute income deviation (or E-A) frontier. 

The mean absolute income deviation, A, is defined as follows . (See 

Hazell (13].) 
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11 

n 
(2.4) E 

s h=l 
r. <ch. - g.) x. I 

j=l J J J 

where 

s = sample s ize of activity gross margins 

= the h-th observed value of the gross margin for activity j, 

h = 1, 2, ... , s 

gj mean activity gross margin for activity j 

x. = level of activity j 
J 

n number of activities. 

Derivation of the efficient E-A frontier is accomplished by minimizing 

A as E is varied parametrically from zero to its maximum value. The 

problem is then analogous to the portfolio problem in that the 

individual must choose that point along the E- A efficient frontier 

which maximizes utility. 

Since this model will be dealt with in greater detail elsewhere 

in this paper, let it suffice to say that the major advantage of MOTAD 

is in its ability to be specified using LP rather than quadratic 

programming. 

Monte Carlo Programming 

Monte Carlo programming is not a mathematical technique, per se, 

but rather a search process. Using the computer, a large number of 

activity combinations, chosen at random, can be scanned to find the 

optimal portfolio. The activity portfolios are first tested for 

feasibility. If a particular activity combination fails to satisfy 

the constraints of the decision problem, it is discarded. If the 
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values assigned to activity levels do satisfy the set of constraints, 

then these values are plugged into the objective function . The 

computer can then compare all of the objective function results and 

choose the "optimal" value. While this optimum may or may not 

coincide with the true optimum value of the objective function 

(subject to the given constraints), the results should yield a close 

approximation given a large enough set of possible portfolios. 

The advantages of this technique are primarily twofold (1 ]. 

The first is that virtually any specification of the objective 

function can be handled. This is particularly useful when the 

objective function is nonlinear and the necessary advanced algorithms 

are either unavailable or too cumbersome. In these cases, the Monte 

Carlo solution is probably a reliable substitute for the "true" 

solution . The other major advantage is that the technique allows 

for use of integer constraints. Since many optimization problems 

require the use of integer constraints, this is a particularly 

important advantage. 

Monte Carlo programming is not a viable technique, however, 

when exact optima are required. Also, the technique suffers from its 

reliance upon the computer. An optimization problem with a large 

number of possible activities will undoubtedly consume much of the 

decision-maker's budget in computer costs. 

Bayesian Decision Models 

The Bayesian approach to decisions under uncertainty involves the 

use of a great deal of probability information - both subjective and 
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objective. The approach is also divided into two separate models, 

DATA and NONDATA. (Note here that it is possible to specify the 

NONDATA model using subjective data only.) Briefly, the difference 

between the two is that the DATA model utilizes forecasts of future 

states of nature or other sample information whereas the NONDATA 

model does not . Let us begin by examining the components of the 

Bayesian NONDATA model. 

The NONDATA model is composed of five components . From Ladd 

and Williams (19] they are: 

(a) a set of actions available to the decision maker, 

(b) a set of states of nature that affect the outcomes of 

each action, 

(c) a set of payoffs for each combination of action and state 

of nature, 

(d) a "prior" probability distribution over states of nature 

that shows the decision maker's estimate of the probability 

of occurrence of each state of nature, and 

(e) a rule for selecting one action from among all of the 

available actions. 

The set of actions available to the decision maker consists of 

those physical acts that the decision maker can feasibly undertake in 

an attempt to achieve a desired outcome. The problem arises in the 

fact that these actions have different consequences depending on the 

existing state of nature. The Bayesian procedure attempts to 

enumerate all possible combinations of actions and states of nature 
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and to identify the corresponding outcomes (or payoffs) . 

Once the payoffs associated with each action-state pair are 

defined, probabilities are assigned to the occurrence of each state 

of nature. The decision maker now has some idea of his chances of 

receiving a particular payoff given that he is undertaking a 

particular course of action. With this information at hand, the 

decision maker can derive expected payoffs from each action. The 

decision criterion, according to the Bayesian procedure, is to select 

the action which yields the highest expected payoff. Let us look a 

little more closely at the steps involved in the model. 

The available actions, the ai, are those actions which the 

decision maker feels are feasible and relevant to the problem at hand. 

The states of nature, the s., confronting the individual are 
J 

those conditions that he feels will have an effect on the outcome 

of his actions . For example, the real estate developer who has to 

decide how many homes to build must consider the possible states 

of the economy at the time his homes are ready to be put on the 

market. As this example suggests, states of nature can often be 

continuous variables . If this is the case, the distribution of 

states may, as one alternative, be broken into a suitable number of 

intervals to simplify the procedure. 

The payoffs for each action-state pair, the Gij' are now 

computed . It is assumed here that, given a specific action and 

state of nature, the corresponding payoff is known, i.e., for any 

given a1 and sj there is only one Gij. 
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The threads that weave all of the preceding components together 

are the prior probabilities. These probabilities, the P(sj), are 

assigned to each state of nature by the decision maker and, in the 

case of the "nondata prior", are that individual's personal, 

subjective estimates. They may be based on experience , research, 

relevant theory or simply casual observation. In many research 

applications prior probability vec tors used are those known as "data 

priors" . These are obtained from past f requency distributions of 

the states of nature . 

With all of the above information at hand, the decision maker 

can now compute expected payoffs and make his decision. The expected 

payoff of action i is computed as 

(2. 5) EP(a.) 
1 

E G .• P (s.) 
j 1] J 

(i 1, 2 , ... , n ; j = 1 , 2 , ... , m) 

Following the Bayesian criteria leads the decision maker to choose 

that action which satisfies the equation 

(2. 6) * EP(a . ) 
l. 

max 
i 

EP(a.) 
l. 

i.e . , choose that action which maximizes the expected payoff. 

The Bayesian DATA model contains all of the components of the 

NONDATA model plus forecast information. If we l e t Zk be the forecast 

that s tate of nature sk will occur, then P(Zk) is the unconditional 

probability that s k is forecast. At this point, conditional 

probability also becomes a factor in the computations . We define 

P(Zkjsj) to be the probability that state of nature s k is forecast 
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given that s . actually occurs . We now combine the conditional 
J 

probabilities with the prior probabilities in order to obtain 

posterior probabilities. This is done using equation (2.7): 

(2 . 7) j,k=l,2, ... ,m 

where 

The posterior probabilities, equation (2.7), give the probability 

that state of nature s j actually occurs given that state s k was fore-

cast. 
Again, as in the NONDATA model, expected payoffs are computed. 

The equation used for this purpose is shown in (2.8): 

(2 . 8) = E G •. P (s .1 Zk) 
l.J J 

where 

EP(aik) = the expected payoff of action ai given forecast Zk 

The Bayesian strategy is to maximize expected payoff for the given 

forecast, i.e . , 

(2 .9) i 1, 2, . . . , n; k 1, 2, .. . , m 

From the decision-making methods described earlier, the 

disadvantages of this model are readily apparent. They are 1) the 

reliance upon subjective probability and 2) choosing an action with 

a criteria that doesn ' t consider the higher moments of the probability 

distribution . It is probably ironic that this method's greatest 

weakness is also its greatest strength. The ability of the Bayesian 



www.manaraa.com

17 

procedure to incorporate subjective data into the model quantitatively 

allows the decision maker to feel that he is making his own decision. 

Because he provides his own unique priors, it seems to him that he has 

some say in the decision process . 

Portfolio Analysis 

The planning pr oblem encountered under conditions of uncertainty 

can also be handled by using portfolio analysis. Markowitz [21] 

authored the definitive treatise on the subject in 1959 and a great 

deal of research in the area has been done in the interim. The basic 

assumption of the model is that the individual considers only the 

first t wo moments of a r isky portfolio in making a decision concerning 

the optimal portfolio to hold . Although some [2,20] have criticized 

t he appropr iateness of this assumption, the technique is useful in 

obtaining at least some information relevant to the deci sion-making 

process . A conclusion reached by the model is that, assuming the 

returns on all assets in the portfolio are not perfectly positively 

correlated, diversification of investments will yield a lower 

standard deviation of return than a straight weighted average of 

their individual standard deviations. Indeed, it is quite possible 

to obtain a portfolio variance which is less than any of the individual 

security variances contained within it. 

A simple portfolio model containing only two risky assets can 

be constructed as such: 
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return equation: 

(2.10) R = A E(R ) + A E(R ) p x x y y 

where 

R = the expected return on the portfolio p 
R x'Ry = the return on risky assets x and y, respectively 

E(R ), E(R ) = the expected returns on assets x and x 

A ,A x y 

y 

y, respectively 

the proportions of x and y included in the portfolio 

and where A + A = 1 x y 

risk equation: 

(2.11) o2 
= A2 o2 + A2 o2 + 2A A Cov (x, y) p x x y y x y 

where 
2 the o p variance of the portfolio returns 
2 the variance of o = returns on asset x x 

o 2 
y the variance of returns on asset y 

Cov (x,y) = the covariance between the returns on x and y 

and since cov (x,y) = pxyoxoy 

where 

pxy = the correlation between the returns on x and y; 

(-1 ~ p ~ 1) 

therefore 

(2.12) o2 = A2 o2 + A2 o2 + 2A A p o a p xx y y xy xyxy 
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(At this point, we can now show that the proposition concerning the 

standard deviation of the portfolio when p I 1 stated earlier can be 

proven. We stated that diversification of investments, assuming 

p I 1, will yield a lower standard deviation of return than would be 

expected by taking a weighted average of the standard deviations 

where the weights used are A and A . The weighted average standard x y 

deviation for the portfolio is 

(2 . 13) o = A o + A o pw x x y y 

and the standard deviation of the diversified portfolio is 

(2.14) 0 
p 

If P = 1, then 

(2 . 15) 0 
p 

1~2 o2 + A2 o2 + 2A A p o o x x y y x y xy x y 

= /~2 o2 + A2 o2 + 2A A x x y y x x 

= A o + A o x x y y 

0 0 x y 

which is equivalent to (2 . 13) above. If p < 1 then 

(2.16) 0 p IA2 o2 + A2 o 2 + 2p A A o o x x y y x y x y 

which, since 2p A A o o < 2A A o o , is less than A o + A o .) xy xy xy xy xx yy 

Obtaining the appropriate first and second derivatives of equations 

(2.10) and (2.12) allows us to represent the relationship between mean 

and variance of the portfolio as seen in Figure 2.1 (assuming 
2 2 E(R ) > E(R ) and o > a . ) y x y x 
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A x 

R y 

0 

R p 

Figure 2.1. Combinations of o2 and R afforded by 
varying A p p 

x 

2 2 The line connecting (R , a ) and (R , a ) represents the various x x y y 
2 combinations of a p 

example, when A = x 

and R afforded by varying the value of A . For p x 
2 2 1, a = a and R = R . The curvature of the line p x p x 

in the graph is dependent upon the value of the correlation coefficient. 

When p = 1, the curvature is very slight. When p = -1, the curve 

"bends" down to the R axis indicating that there exists some p 

combination of x and y which will completely diversify away all 

riskiness. These two cases are shown in Figures 2.2a and 2.2b in the 

more familiar mean-standard deviation space where the lines become 

straight rather than curved. 

The efficient set of portfolios can be defined as those portfolios 

which have the highest expected return for any given level of risk. 
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d a p p 

a a a a y y y - - - - - - - - - - I y 
I 
I 

a 
I 

a a x 1 a x - 1 x Ip = x p 
I 
I 
I I 
I I I 

R R R R R' R R x y p x p y p 

Figure 2.2a . Combinations of E & V 
when p = 1 

Figure 2.2b. Combinations of 
E & V when 
p = -1 

For examp l e, the line R'cr in Figure 2.2b would represent the efficient p y 
set of portfolios given p = -1. The line a R' would be inefficient x p 

because the individual could obtain portfolios with higher expected 

r eturns that subject him to no more risk simply by moving in a 

horizontal direction to the line R'u • 
p y 

Given an efficient set (or efficient frontier) the individual 

must decide which point along the frontier he prefers . This is done 

using the familiar concept of utility. Assuming again a world with 

two risky assets, x and y, the individual's utility function can be 

expressed as u = u(x,y) and, by setting du/dx = O, we can obtain 

his family of indifference curves. If it can be assumed that the 

i ndividual is risk-averse, the indifference curves can be proven to 

be concave downward (21,31). This implies that the direction of 
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increasing utility is to the southeast (see Figure 2 . 3) . The decision 

maker will maximize utility by choosing that portfolio which allows 

him to ob tain t he indifference curve representing the largest level of 

ut ility . 

a 

Figure 2. 3 . Utility map 

u2 > ul > uO 

increasing 
utility 

R p 

This occurs at the point where the efficient frontier is just 

* tangent to one of t he indifference curves (P in Figure 2 . 4) . This 

result does not occur in the case of a risk-neutral or risk-preferring 

individual. In these cases, a corner solution will exist . It can be 

a p 

a* p 

(R , a ) x x 

R R p p 

Figure 2 . 4 . Maximization of utility 
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shown that risk-neutral and risk-preferring individuals have the 

indifference maps which are represented by Figures 2.Sa and 2.Sb, 

respectively [21 ) . 

a p ~o 
I 

increasing 
utility 

R p 

Figure 2. Sa . Indifference curves 
under assumption of 
risk-neutrality 

a p 

increasing 
utility 

R p 

Figure 2.Sb. Indifference curves 
under assumption of 
risk-preference 

As can be seen by Figure 2 . Sa, the risk-neutral individual is 

concerned only with expected return and will be indifferent between 

two assets of differing riskiness as long as they both yield the same 

expected return. This individual will always choose a portfolio 

* consisting entirely of asset y as seen in Figure 2 . 6a (at point P ) . 

Figure 2.Sb shows that the risk-lover will be indifferent between 

an asset with (relatively) high return and low risk (point A) and an 

asset with (relatively) low return and high risk (point B). With the 

direction of increasing utility being to the northeast, this also 

* yields a portfolio consisting entirely of asset y (point P in 

Figure 2.6b). 
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C1 p 

C1 y 

R x 

C1 x R y R p 

Figure 2 . 6a . Utility-maximizing 
portfolio given 
risk-neutrality 

Figure 2 .6b. Utility-maximizing 
portfolio given risk-
preference 

The portfolio analysis can be expanded to include non-risky assets 

as well as any number of risky asse ts. Its most obvious application is 

to stock portfolios but it has been applied to many varied fields; 

whole-farm planning [l], monetary theory (9,28,29] and insurance [24], 

to name a few . The portfolio problem is amenable to solution by 

several mathematical models . The most commonly used of these is 

quadratic programming. This is the natural choice given the standard 

specification of the utility function as quadratic. Markowitz [21] 

has shown, however, that dynamic programming, Monte Carlo techniques, 

gradient methods and even linear programming can be employed as 

computing techniques under cer tain circumstances. 

The problems associated with portfolio analysis are primarily 

threefold. The first is that, in most situations, the portfolio 

selection must be done using quadratic programming. This causes 
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problems because of the large amounts of data inherently needed to 

employ quadratic programming as well as deficiencies in the computing 

algorithm itself [1,13]. The second problem is one alluded to earlier. 

Much criticism has been levelled against the method for taking into 

account only mean and variance. While higher moments of the utility 

function can be worked into the analysis, they are done so at a 

considerable computational cost [ 1 ]. The final major argument 

levelled against the technique is one common to all methods which 

rely on utility maximization - how do you ascertain the individual's 

indifference curves? Although some progress has been made in this 

area [12], the derivation of indifference curves and the specification 

of utility functions remains a lengthy and somewhat dubious procedure 

[see Appendix]. It should be pointed out, in defense of this 

method, that it probably isn't necessary for the analyst to specify 

individual indifference curves. It is sufficient to present the 

decision maker with his available options and allow him to choose the 

action(s) which he prefers. In this way, the decision maker is 

maximizing his utility without verbally or otherwise communicating 

his utility function to the researcher. 
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CHAPTER III. APPLICATION OF DECISION MODELS 

TO THE MARKETING DECISION 

The problem to be considered in this paper deals with the farm 

marketing decision. In particular, we are interested in furthering 

the work done by Hector Eduardo Gonzalez-Mendez in his doctoral 

dissertation, "Grain marketing gains in Iowa and the use of price 

forecasting models - a Bayesian decision approach" [10]. In his 

paper, Gonzalez-Mendez (G-M) formulated a Bayesian model which the 

farmer could use to determine, at harvest time, whether he should 

sell his grain or store it for future sale. 

Bayesian Model 

G-M assumes that the crop is available for marketing innnediately 

after harvest. The farmer's only choice at that point is whether to 

sell or store. For him to make the decision to store, he must 

foresee some gain from postponing sale of the grain in question. 

In analyzing this problem, G-M broke the marketing season up 

into discrete one-month intervals. These are indicated by the sub-

scripts "h" for the month of harvest and phi (i = 1, 2, .•. , 10) for 

the i post-harvest months of the marketing season. For example, if 

November is the harvesting month for corn, then a variable with 

subscript ''h" represents that variable's value in November . Likewise, 

ph1 signifies December, ph2 signifies January and so on. He then 

assumes that there is some price pattern which will leave the farmer 

indifferent between selling at harvest or storing until any later 
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month . This set of prices is defined to be the set of break-even 

prices, the bep.. These are calculated as: 
1 

(3 . 1) bepi CP(h)(l+r)i + sci 

where 

CP(h) harvest time cash price 

r = rate of interest per ph period 

SC. costs of storage from h to ph. 
1 1 

i 1, 2, ... , 10 

This says that the farmer must be at least compensated for his 

storage costs plus some premium for his risk-taking in order to 

induce him to store his crop . (In the G-M thesis, this risk premium 

is quantified using annual rates of interest paid by farmers. It 

seems probable that a more suitable measure of the risk premium 

could be obtained by using a rate of interest which is more closely 

associated with the farmer's opportunity rate of interest . This 

would be some interest rate which the decision maker could realize 

by selling his crop at harvest time and investing in an alternative 

financial instrument.) By appeal to Muth ' s rational expectation 

hypothesis, G-M assumed, and subsequently tested, that the 

expectation of the future cash price would be the break-even price. 

This allows us to consider a distribution of possible cash prices 

around the bep. as seen by 
1 

(3.2) CP(phi) = bep1 + ui 

2 2 E(u1) = O; E(ui) = cr1 
2 2 

a. >a . for i > j 
1 J 
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The diverse elements present in the determination of actual cash 

prices and the size of the sample set would suggest, through the central 

limit theorem, that the u. are approximately normally distributed. 
l.. 

Although the data from the 1955-1976 marketing years indicate somewhat 

higher kurtosis in the distribution of the u. than would be expected 
l.. 

of a normal distribution, G-M assumed normality in order to simplify 

the problem. This implies, then, that the CP (ph.) are normally 
l.. 

2 distributed with mean bepi and variance cr1 . In order to define 

specific states of nature of the future cash prices within each ph., 
l.. 

these distributions of cash prices were divided into five equally 

likely intervals, the 

determining payoffs. 

The midpoint of each interval was used in s .. 
J 

For example, CP .. is the midpoint of the j-th 
l..J 

state of nature in ph , (j = 1,2,3,4,5; i = 1,2, . . . ,10). 
1 

The possible actions open to the farmer in any marketing period 

are two - either sell or store, with selling in period phi defined as 

action ai. As mentioned earlier, the farmer will sell only if he 

foresees no gain from storage. It now becomes necessary to determine 

the gain from each action over all states of nature . Let 

G.. gain from action i if s. is the state of nature 
l..J J 

prevailing in ph . where Gi . = CP .. - bep .. 
l. J l..J 1 

Given that CP .. and bep. can be computed at harvest time, the 
l..J 1 

decision maker can now construct a payoff (gain) matrix which 

represents the Gij for all possible combinations of ai and sj (see 

Figure 3 . 1) . 
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~ sl s2 S3 s4 S5 
ai ' · 

t 
ao 0 0 0 0 0 

al Gll Gl 2 Gl3 Gl4 GlS 

a2 G21 G22 G23 G24 G25 

a3 G31 G32 G33 G34 G35 

a4 G41 G42 G43 G44 G45 

a5 GSl G52 GS3 G54 G55 

a6 G61 G62 G63 G64 G65 

a7 G71 G72 G73 G74 G75 

a8 G81 G82 G83 G84 G85 

a9 G91 G92 G93 G94 G95 

alO GlO,l GlO 2 
' 

GlO 3 
' 

GlO 4 
' 

GlO 5 
' 

Figure 3 .1. Payoff matrix 

The Bayesian procedure now requires that prior probabilities be 

assigned to the possible states of nature . G-M introduces four prior 

probability vec tors which he thinks farmers ma y plausibly use. One 

characterizes a farmer who assumes all states of nature are equally 

likely (prior I), one assumes a pessimistic (i.e., lower prices more 

likely) outlook (prior P), another assumes an optimistic outlook 

(prior 0), and the final prior probability vector (prior N) 
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characterizes a farmer who has a strong appeal for the value of central 

tendency (i.e., the probability of CPij - bepi = 0 is quite high). To 

a limited degree, G-M also incorporates data-priors into his NONDATA 

model. He uses historical data for corn and soybeans over the 1955-

1977 period to derive estimates of the frequency distribution of prices . 

In order to include a Bayesian DATA model in the analysis, G-M 

introduces five possible fore€asting models. These include a Trend 

Price Model (TPM), a Moving Average Price Model (MAPM), a Two-Variable 

Linear Model (TVLM), a Single-Equation Reduced Form Model (SEM) and a 

model which utilizes futures quotes from the Chicago Board of Trade 

(CBT-F) as forecasts. 

The Trend Price Model assumes that the difference between the 

price in period ph. and period h remains the s ame from one year to 
1 

the next . The forecasted price is specified as 

where the "t" and "t-1" subscripts represent year t and year t-1, 

res pectively. 

The Moving Average Price Model postulates that this year's fore-

casted price for period phi can be obtained by using a five-year 

moving ave rage value of the price series. The forecast is obtained 

using 

(3 . 4) 
t-1 

FP(phi)t = E 
y=t-5 

[ CP ( p h . ) ] I 5 • 
1 y 

The Two-Variabl~ Linear Model assumes that the expected price 
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in period phi is a linear function of past prices in period phi, i . e., 

where ci and di are least-squares estimates using data from the five 

years preceding the year to be forecast. 

The Single-Equation Model is a reduced-form equation which 

combines information from both a supply and a demand function . The 

least-squares equation used makes CP(phi) a function of only two pre-

de t ermined variables, Yi and Zi. 

(3.6) 

where 

CP(ph.) 
1 t 

Yit consumer disposable income at the beginning of month i in 

marketing season t 

Z. stock of corn (or soybeans) on hand at the beginning of it 

month i i n marketing season t. 

This equation, too, was estimated using data for the five years 

inunediately preceding the forecast year. 

The Futures Market Model uses futures prices reported by the 

Chicago Board of Trade to forecast prices for the months of the 

marketing season corresponding to the months in which futures contracts 

are subject to delivery. These reported prices are then adjusted to 

allow for the basis present between Chicago and the point in Iowa 

under consideration. 

The final elements necessary for computation of the op t imal 
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Bayesian DATA strategy are the conditional and posterior probabilities. 

The conditional probabilities measure the accuracy of the particular 

forecast and are necessary in computation of the posterior probabilities. 

In the G-M thesis, they are computed as the percentage of times that 

some price CPih was forecast given that CPij actually occurred. These 

probabilities, denoted as Pr(FPihlcPij), were computed for the 22 years 

prior to November of 1976. 

The posterior probabilities are obtained from straightforward 

computations combining the conditional and prior probabilities already 

computed. The posterior probabilities, denoted as Pr(CPijlFPih), give 

an idea of how often CPij occurs given that CPih is forecast before-

hand. They are computed as 

where 

Pr(CPij) = prior probability that state of nature j will occur 

in period i 
5 
~ P (CPi ) 

t=l r t 

Given the immense amount of data manipulation afforded by all of 

the above computations, G-M sets out to determine (using DATA and NON-

DATA strategies) which course of action will maximize expected payoffs 

in the 1976-77 marketing season. 

The NONDATA strategy, as mentioned earlier, is to maximize 

expected gain without the use of forecast information. First, 
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expected gains from each action must be computed as 

The decision maker must now choose the ai which maximizes EG(ai), 

i .e., choose the action which satisfies 

* (3.9) EG (8n) =max EG(ai) 
i 

The farmer, at harvest time, now chooses whether to sell or 

store on the basis of whether EG(ai) ~ 0 for any month other than the 

month of harvest. If it is, he stores. If not, he sells . G-M arrived 

* at several EG (8n) due to his use of four nondata priors and five 

data-priors. The majority of the results indicated that the farmer 

should store his grain for at least one month. 

The DATA strategy makes use of the posterior probabilities 

calculated with the help of price forecasts. As in the NONDATA case, 

expected gains are first computed . 

where 

FPik is the actual price forecast. 

The optimal strategy is again to maximize expected gains, i.e., 

(3.11) 

G-M derived optimal DATA strategies for all combinations of non-

data priors, forecasting models and two commodities, corn and soybeans. 
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This time, however, his harvest time strategy was consistent 

throughout - store the grain for at least a one-month period. 

The biggest problem that one encounters with the G-M thesis is 

its inability to react to new information that becomes available to 

the farmer following the month of harvest. The paper presents a 

model which chooses an optimal marketing date as of the time of 

harvest. It does not deal with changing conditions in the market 

which may have an impact on when the maximum gain from storage will 

occur. For example, a governmental program which will affect farm 

prices may occur later in the marketing season which could not be 

foreseen at the time the optimal Bayesian strategy was formulated. 

It is quite possible to reestimate the model periodically 

throughout the marketing season to incorporate new information. 

Indeed, G-M proposed just that idea in his closing remarks. Although 

this has been done to some limited degree (see Gonzalez-Mendez and 

Ladd [11]), the data requirements for several combinations of priors, 

forecasts and commodities would be tremendous. If a suitable data 

bank and computer program to generate strategies could be developed, 

however, it would be a valuable addition to the information now 

provided farmers to aid in marketing decisions. 

Game Theory Techniques 

Wald maximin criterion 

As pertains to the grain marketing problem cited in the G-M 

thesis, use of the Wald criterion would be extremely easy and straight-

forward. The payoffs formulated by G-M, along with a definition of 
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all possible states of nature for each marketing period (i.e., the 

sj 's from the thesis) would provide adequate data to choose a 

marketing action under the Wald guidelines. The ai chosen (i = 1, 2, 

.• . , 10) would be the one which yielded the largest minimum gain over 

all states of nature. This implies, however, that unless some 

ai, i > 0, has nonnegative payoffs over all states of nature, the 

farmer ' s decision will automatically be to sell at harvest time. It 

seems that, given any knowledge of the probabilities of the future 

sj, this technique will not, on average, choose a marketing strategy 

for the farmer which will yield the maximum expected gain. 

Savage regret criterion 

The Savage criterion can also be implemented using the payoff 

matrix from the G-M thesis. If we assume, as G-M did, that five 

states of nature and eleven marketing actions exist, we could compute 

the "regret" corresponding to each of the 55 action-state pairs. 

The first step would be to find the maximum gain for each state of 

nature. For each state we would then subtract from this state's 

maximum gain the gains received from every other action . The results 

are summarized in the Regret Payoff Matrix, Figure 3.2. 

The problem is now reduced to the choice of that action which has 

the smallest maximum regret (G -Gi) over all j. By doing this the 
maxij j 

farmer is supposedly minimizing the "amount of regret" that he feels 

from not having chosen the optimal action given the state of nature 

that does prevail and determines the outcome of his action. 
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State of Nature 

ao b -G 
maxi! 01 

G -G maxi2 02 G -G maxi3 03 
G -G max14 04 G -G max15 05 

al ~ - G 
maxi! 11 G -G 

maxi2 12 
G -G 

maxi3 13 
G -G 
maxi4 14 

G -G max15 15 

a2 G -G I maxi! 21 
G -G 

maxi 2 22 
G -G 

maxi3 23 
G -G max14 24 G -G max15 25 

a3 C -G I maxil 31 
G -G 

maxi 2 32 G -G maxi3 33 G -G max14 34 G - G 
maxi5 35 

I 

a4 G -G G -G G -G G -G G -G I max11 41 max12 42 max13 43 max14 44 maxis 45 
c 
0 a5 'rl 
.u 
{.) 
l(I 

a6 

I 
G -G G -G G -G G -G G -G I maxi! Sl maxi2 S2 max13 53 maxi4 54 maxiS 5S 
b -G G -G G -G G -G G -G maxil 61 max12 62 maxi3 63 maxi4 64 maxis 65 

a7 
:; -G max11 71 G -G max12 72 G -G maxi3 73 G -G maxi4 74 G -G 

maxi5 7S 

a8 
t; -G G -G G -G G -G G -G maxi! 81 max12 82 maxi3 83 maxi4 84 maxis 85 

a9 
[; -G G -G G -G G - G G -G maxil 91 maxi 2 92 max13 93 max14 94 maxis 9S 

t; -G G -G G -G G -G t; -G 
maxi! 10 ,1 maxi2 10,2 maxi 1 10,3 max-rt, 10, 4 maxis 10,S 

Figure 3.2. Regret payoff matrix 

where G = the maximum payoff over all a 1 , given state of 
maxij 

nature j (j = 1,2,3,4,S). 

Hurwicz pessimism-optimism criterion 

Under this criterion, the decision maker looks only at the best 

and the worst possible outcomes from any given action . To the worst 

outcome he assigns the coefficient bi (0 ~ b1 ~ 1) to indicate his belief 
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(subjective probability) that the state of nature which gives rise to 

that outcome will actually occur. This is, in a sense, similar to 

the formulating of prior probabilities in the Bayesian model. To the 

best (maximum) outcome he now assigns the coefficient (1-bi)' his 

"optimism index". The objective is to maximize the "bi index" over 

all i where 

(3 . 12) bi index = bi minj Gij + (1-bi) maxj Gij 

In the G-M problem this implies that the decision maker would 

choose from among eleven (i=O,l,2, ..• 10) bi indices that index which 

was the largest. The procedure may be simplified somewhat by 

fol lowing the approach outlined below. 

1. Using a payoff matrix which lists the gains from any 

action-state pair, determine the maximum and minimum 

gains for each action over a l l states of nature. 

2. Determine which states of nature correspond to the 

maximum and minimum gains found in step (1) above. 

3. For each action assign a number b, 0 < b < 1, to denote 

the decision maker's level of pessimism concerning the 

state of nature which corresponds to the minimum gain 

for that action. 

4. 

5 . 

Form the bi index for each ai. 

Choose the action which yields the highest value of 

the bi index. 

The chief advantage of this method (as well as the Bayesian 
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model) is that it allows the farmer to interj ec t his own beliefs 

concerning future states of nature into the model. This gives him 

the satisfaction of knowing that it is "his" model and r eflects his 

judgment. One large flaw in the model, however, is that it considers 

only the worst and the best outcomes and disregards those in-between. 

If all payoffs except one were bunched close to the minimum payoff, 

then the maximum payoff would carry an inordinate amount of weight, 

as seen in the example below. 

~ sl s2 s3 s4 

al 10 15 20 50 

a2 10 40 45 50 

Figure 3.3. Payoff matrix 

Upon inspection, it becomes clear that action a 2 is superior to 

a1 because, for every sj, the payoff is greater than or equal to that 

available under a1 . Because s 1 is the state of nature prevailing 

when the minimum payoff is encountered for both a1 and a 2 , it can be 

presumed that the decision maker will assign equal values of b to 

both actions. This, then, implies that the individual is indifferent 

between the two actions as seen by equations (3.13) and (3.14): 

(3.13) action a1 : b1 index=10 b1 + 50 (l-b1) 

50 - 40 bl 
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(3.14) action a 2 : b 2 index 

= so - 40 b2 

where 

It is, therefore, obvious that the Hurwicz criterion is capable of 

producing some nonsensical results. 

Laplace criterion 

The Laplace criterion, which is based on the "principle of 

insufficient reason," is considered a game theory technique by some 

(6,34) and so will be included here. As we have seen earlier, it is 

assumed under the Laplace criterion that all states of nature are 

equally likely. Under this assumption, the decision problem boils 

down to choosing the action with the highest "average" return. All 

that the decision maker must do is add up the gains for action ai 

over all sj and divide that sum by the number of states of nature 

in order to get an "average gain" for action ai . The decision 

becomes to choose that action with the largest average gain . As 

regards the marketing decision, the Laplace criterion is to choose 

the marketing strategy which will give the farmer the largest average 

gain to storage over all states of nature. While this criterion is 

extremely easy to use it neither provides nor utilizes sufficient 

data for the farmer to make a completely informed decision. If, for 

instance, the farmer has a good idea of the probable states of nature 

which will occur in the future, why not use this information in helping 

him plan his marketing strategy? 
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Maximum Admissible Loss Approach 

The Maximum Admissible Loss Approach (MALA), as developed by 

Boussard and Petit [ 4 ] is a linear prograrmning model which is 

concerned with the production, rather than the marketing, decision. 

The constraints imposed upon the MALA model are concerned with 

keeping the farmer from losing more than a specified amount, given 

the worst conceivable state of nature for the chosen combination of 

activities. 

The first step in specifying the MALA model is to determine 

what the maximum admissible loss, L, is to be. As seen before, L is 

calculated as the difference between expected income and the minimum 

permitted income, MINI. Assume first that the farmer has a fixed 

amount of, let ' s say, corn on hand at harvest time. It is obvious 

that he has the option of selling the corn at that time and "losing" 

nothing . (A "loss" here refers to the possibility, due to conditions 

of uncertainty, that the price of corn may fall below the break-even 

price during future marketing periods. If the farmer is making his 

decision at harvest time, then his current corn price is equal to 

the break-even price by definition and he stands to make no "gain" 

or "loss".) This is to say that if the farmer has corn on hand and 

can sell it at harvest time, why should he be willing to accept 

anything less than this amount which he will receive with certainty? 

Thus, the minimum acceptable gain is equal to zero, i.e., MINI= O. 

The model can now be specified as 
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(3 .16) s.t. FLi xi < L/K For all i 

and 

(3 .17) I:Xi 1 

where 

EG(ai) = the expected gain for activity i over all states 

of nature 

Xi percentage of the corn crop sold in marketing period i 

FLiXi = focal loss for activity i 

L maximum admissible loss 

K a constant ~ 1 

The value of L can be computed as 

But as we have seen, MINI = 0 and, therefore 

(3.19) L = EEG (ai) x - 0 i 

I:EG(ai) X. 
1 

To complete the model, the values of the FL1 can be obtained using 

(3 . 20) FLi = EG(a1) - Gmi for all i, i = 1, 2, •.• , n 

where 

Gmi minimum gain for activity i over all states of nature. 

Now, given appropriate data for cash prices, forecasted prices and the 

components making up the break-even prices, the model can be solved 
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using linear programming techniques. 

The problem that is encountered with this model in the marketing 

framework is that it leads to internal inconsistencies. This can be 

seen as follows: 

Define (3.21) max EG(a.) = EG(a ) 
i 1 m 

where a denotes the action which yields the maximum 
m 

expected gain. 

Then (3.22) rEG(ai) Xi ~ EG(am) rxi 

because EG(ai) ~ EG(am) for all i 

and (3.23) EG(a ) r xi = EG(a ) m m 

because rxi = 1 from (3.17) 

Therefore, to maximize rEG(ai) Xi we must set 

(3.24) EG(ai) = 

and (3.25) X = 1 m 

This yields 

(3. 26) 

EG(a ) m 

EG(a ) X m m 

= EG(a ) m 

From (3.26) we can see that the MALA model constrains the decision 

maker to marketing all of his grain in one period. This, in turn, 

leads to the aforementioned inconsistency in the model . 

If we assume, as seems plausible, that there exists some state 

of nature for every marketing action i, i > O, such that 

(3.27) CPi < bepi 

then (3.28) G1 < 0 
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This implies that 

(3.29) G < 0. mi 

Therefore, from (3.20) 

(3.30) FLi > EG(ai). 

43 

Now, given that FLi > EG(ai) from (3.30) and that L = EG(ai) or 

L = 0 from (3 .19) (as Xi= 1 or Xi= 0, respectively), this implies 

(3.31) 

Therefore 

FL > L i 
for i > 0. 

because K ~ 1 

because xi = 0 

Expression (3.32) runs contrary to (3.16) for the one action, 

that is included in the solution. The model excludes the gain-

maximizing action and is, therefore, internally inconsistent. 

There is, however, one exception to this dichotomy . If the 

optimal marketing decision is to sell at harvest time, i . e . , am= a
0

, 

then L = EG(a ) = 0. Since, in this case 
0 

(3.34) 

then (3 . 35) 

EG(a ) = G = 0 
o mo 

FL 
0 

EG(a ) 
0 

G = 0 mo 
Plugging this back into the activity safety constraints yields 
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(3.36) FL ~ L/K 
0 

or 0 ~ O/K 

or 0 ~ 0. 
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This is the only marketing decision which will satisfy the model . The 

MALA model, therefore, is not very well suited for use in determining 

an optimal marketing strategy. 

Portfolio Analysis and MOTAD 

Because portfolio analysis and MOTAD embody essentially the same 

idea in different mathematical specifications, we will investigate 

the application of both techniques in this section. 

The quadratic programming model used in portfolio analysis, as we 

have seen, assumes that the individual makes decisions under uncertainty 

on the basis of the expected return and the variance of return of 

every action (or bundle of a c tions) which confronts him . This choice 

criteria is valid if the decision maker possesses an E-V utility 

function. The quadratic model usually assumes that the individual is 

risk averse, i.e., aE/av > 0 along any indifference curve and that E 
2 2 must increase at an increasing rate with higher V, i.e., aE /a V > 0. 

Given that the above assumptions hold, the individual can then 

narrow down his choice among those actions for which variance of 

return is minimized for a given expected return. This, then, defines 

the set of "efficient" actions. 

As applied to the marketing decision, the parametric quadratic 

programming model becomes 
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where 

(3.37) 

(3. 38) 

minimize V. 
l. 

such that EG(a.) 
l. 

45 

(0 ~ A ~ co) 

Vi= variance of gain gi (i = 1, 2, ... , n) 

1 s 
s-1 E (git 

t=l 

EG(a.) = FP. - hep. 
l. l. l. 

This model assumes, of course, that the decision maker has in 

place a forecasting model by which he can obtain the FP . . These could 
l. 

be of the same form as those presented by G-M or of any other form 

specified by the farmer. The model also assumes that the farmer 

intends to market his entire stock of grain at one time. 

Solution of the quadratic programming problem yields the farmer 

a listing of all efficient actions available to him . He now has a 

"menu" of actions open to him from which he can choose an optimal 

marketing strategy. (This assumes that the decision maker has full 

knowledge of his own indifference curves . If so, he would choose 

that efficient marketing action which would allow him to obtain the 

indif ference curve representing the greatest attainable expected 

utility - point A in Fi~ure 3 . 4). Since specification of individual 

indifference curves is beyond the scope of this paper, we would 

obtain the efficient frontier and allow the farmer to subjectively 

make his final choice. 
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E(R) 

Figure 3.4. Maximization of expected utility 

A problem with this choice criterion is that the marketing 

decision involves cross-time, rather than cross-sectional, 

considerations. The classic portfolio problem is concerned with 

choosing an optimal strategy (composed of many separate actions) at 

a given point in time. The problem we are faced with involves 

choosing the optimal time to exercise one action, namely, to sell. 

Since expected gains normally change over time (due to changes in 

forecasted prices, storage costs and desired rates of return) it 

is probably not prudent for the farmer to choose his marketing 

strategy based on the efficient frontier derived at harvest time. 

He can, however, use the information received from the harvest time 

quadratic programming solutions to choose whether he should sell or 

store his grain at that time. If he is willing to take the risk 

associated with future gains, the farmer should store his grain until 

a later date. If the farmer is extremely risk averse, he may choose 

to market his crop now even if there is a chance for significant 
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gains later. If his decision is to store the grain, he will again 

be faced with the storage decision one month later. At that point, 

he must reformulate the problem with new price, interest rate and 

storage cost data and with i now varied from i = 2, 3, ..• , n. Re 

must continue this procedure every month until he chooses to sell. 

Thus far in this analysis we have assumed that the farmer 

markets all of his grain at one time. It is quite possible (indeed 

probable) that the farmer allows multiple marketing actions to be 

considered. This may be the case for a pair of reasons. The first 

is that most farmers need to have at least a minimal income flow in 

order to meet their business and personal expenses. To the extent 

that other sources of income fall short of meeting this minimum 

level, farmers must sell grain periodically throughout the 

marketing season to generate adequate income. The second reason for 

multiple marketings is the one that portfolio analysis was originally 

developed to address. The farmer may want to diversify away some of 

the risk involved with future grain price fluctuations. If we 

consider marketing actions to be "assets" with given mean returns 

and variances of return, then we again have precisely the portfolio 

problem. Allowing for more than one marketing action does, however, 

complicate the decision problem considerably. 

Given the above assumptions concerning the possible number of ai 

to be chosen, the optimization problem becomes: 

(3. 39) 
n n 

minimize V = E E XiX. cr 
i=l k=l -K ik 
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such that 
n 

(3.40) E E(gi)Xi ). p, = 0 to unbounded) 
i=l 

where gi CPi - bepi 

(3 . 41) p (FPiXi) ~ Yi (for all i, i 0' 1, ... ' n) 

n 
(3.42) E Xi~~ 

i=O 

(3.43) xi ~ o, Y. > 0, 0 ~ p 
l. -

~ 1 

where 

X. the amount of grain sold in period i (in bu.) 
l. 

oik = the covariance of gains between the i-th and k-th 

activities when 1 I k and the variance of gains for 

the i-th activity when i = k 

yi = the minimum acceptable income in period i 

~ = total amount of grain on hand (in bu.) 

n = the number of activities 

p < 1 to allow for possibility that CPi < FPi. 

Let us first point out that if the farmer is not faced with 

constraints to provide for an adequate income stream (due to other 

farm receipts, investment income, etc.) then equation (3.41) can 

readily be dropped from the model. 

We now require some way to determine the variances and 

covariances, the oik' of the gi in order to calculate V. Hazell (13 ] 
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suggests that subjective parameter values for crik can be incorporated 

into the model in certain circumstances. However, the low likelihood 

that any farmer would be able to explicitly state numbers for these 

interrelationships makes this method undesirable. Using standard 

statistical techniques allows us to estimate V using historical data: 

(3.44) v = 
n n 
E E Xi~ 

i=l k=l 

Equation (3.44) can now replace equation (3.37) in the quadratic model. 

Solution of the programming problem leads to derivation of the 

efficient frontier. With multiple marketings now possible, the farmer 

is free to choose a mixture of marketing actions, subject to the 

income constraints, which he feels is in his best interest. As before, 

however, we would expect that forecasted gains would change throughout 

the course of the marketing season. It becomes necessary, then, to 

reformulate the problem at periodic intervals throughout the year. 

If a new efficient frontier is derived every month, it becomes 

possible to drop the income constraints altogether. We assume here 

that the farmer knows, at the time the efficient frontier is derived, 

how much money he will need in that marketing period. It is then 

possible for him to sell as much grain as necessary to obtain that 

needed level of income. With a base income for the month already 

secured, the farmer can now look at the marketing problem for the 

remainder of his grain as though it were free of income constraints. 

As was stated in the review of the literature, the main drawback 

of portfolio analysis is that it relies on the use of quadratic 
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programming. This causes a problem in that the quadratic programming 

algorithms found on most computers require large amounts of variance-

covariance data and they may well be complicated. Hazell [13] has 

developed an approach which approximates the quadratic approach yet 

can be solved with linear programming techniques. It is this 

minimization of total absolute deviations (MOTAD) approach to which 

we will now turn our attention. 

MO TAD 

If we assume that the same sample data used in equation (3 . 44) 

are available to us now, the mean absolute gain deviation (m.a.d.) 

can be computed as: 

(3 . 45) 

where 

A = an unbiased estimator of the population m. a.d . 

"A" is an alternative to V in measuring the dispersion of the gi 

parameter and has the advantage of being linear in nature rather than 

quadratic. It seems reasonable to assume that the decision maker 

can use A just as readily as he can use V in deciding between various 

combinations of risk and return. The problem now becomes how to 

derive an efficient E-A frontier from which the individual can make 

his decision . 

Since, from equation (3.45), it is apparent that l/s is constant, 

it is sufficient to minimize sA subject to the constraints (3.40) -

(3 . 43) in order to derive an efficient E-A frontier. It becomes 
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necessary, however, to convert sA to a form that is suitable for a 

linear programming model. 

Define Zt as 

(3.46) z = t 

n n 
E git xi - E gi xi 

i=l i=l 

such that (3.47) Zt = z+ - z-
t t 

where z+ zt :! o t' 

(for all t , ta 1,2, .•. s) 

If we can now define z: and Zt in some way such that one or the other 

is zero, then 

This 

when 
s 

(3 .48) I zt I = z+ + 
t z . t 

can be done by defining z+ 
t to be 

z+ ... 
n 

(3.49) I E (git - gi) xii t i=l 

n + 
E (git - ~i) x1 is positive and Zt is zero otherwise . Therefore, 

i=l 
E 

t=l 
zt is the sum of the absolute values of the positive gain devia-

tions about the sample mean gains. Likewise, let 

(3.50) z~ 

n 
when E (git - g1) Xi is negative and Zt is zero otherwise . Thus, 

s i=l 
E Z~ is the sum of the absolute values of the negative gain 

t=l 
deviations about the sample mean gains . 

If we set up the minimization problem as outlined earlier, it 

would look like 

(3.51) minimize sA 
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such that 

(3.52) 
n 
r 

i=l 

52 

(g -g ) x - z+ + z-it - i i t t 

and subject to constraints (3 . 40) - (3.43). 

It is obvious, however, that 

s 
z+ 

s 
E = r z 

t=l t 
~l 

t 

0 (for all t, t=l,2, ... s) 

since the sum of the positive and negative deviations about the mean 

must be zero. Therefore , minimization of either + zt or 

sufficient. This is equivalent to minimizing t sA rather than sA. If 

we choose to minimize only the sum of the absolute values of the 

negative deviations, EZ~, the model becomes 

s 
(3.53) minimize E Zt 

t=l 

such that 
n 

(3.54) r (git - gi) xi + zt ~ o 
i=l 

(for all t, t=l,2, . .. s) 

and subject to constraints (3.40) - (3.43). Again, if we assume 

that the efficient frontier is reformulated every month, we can 

drop the i ncome constraints from consideration. 

As has been stressed many times before, the chief advantage of 

the MOTAD approach is that it uses a linear programming algorithm 

rather than the quadratic programming procedure necessary for 

solution of the portfolio analysis formulation. Since many decision 

makers can gain access to a computerized LP package, whereas 
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they may not be able to find a quadratic package, this factor becomes 

of prime importance. 

The logical question which arises at this point is "Row do the 

results of the two models compare?" This is a valid question since, 

on average, we would not expect both models to yield equivalent 

results. 

The relevant theory behind both of these models states that the 

individual will select the assets in his portfolio on the basis of 

those assets' expected return and their riskiness of return . This 

implies a tradeoff between E and V or, alternatively, between E and 

SD (standard deviation). Since the values for expected return, E, 

are the same for both models, we will rule this out as a source of 

variation in the results and concentrate on the measure of dispersion 

used in each model as the source of error . 

If we assume that the distribution of gains for each ai are at 

least approximately normally distributed, Davies and Pearson [5] have 

shown that the population standard deviation can be estimated using 

SD ~s -
( )

1 
A 2(s-l) 2 where s = sample size. 

Since (~S/2(s-1)) 1/ 2 is a constant and A is the sample m. a.d . , it is 

apparent that MOTAD generates efficient frontiers for this estimate 

of the population SD. As seen from equation (3.44), quadratic 

programming uses the conventional estimate of the population SD and, 

therefore, produces efficient frontiers for that measure . The 

differences in the reliability of the results of the two models now 
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boils down to the reliability of each of these estimators. 

Hazell [13] states that both estimators are unbiased but that 

there is a difference in the degree of efficiency afforded by each. 

Let us point out to begin with that the sample SD is the minimum 

variance estimator, i.e., it is the "most efficient". Hazell notes 

that Fisher [ 7] has shown that, for "large" samples, the m.a.d. is 

approximately 88 percent as efficient as the sample SD in estimating 

the population SD. Hazell goes on to show that for any sample size 

greater than 4 or 5, the sample m.a.d . is at least 85 percent as 

efficient as the sample SD. However, it should also be noted that 

the MOTAD model considers only variations in gains and does not look 

at covariations between gains. This may lead to further inefficiencies 

in t he MOTAD model. 

Aside from the oft-stated fact that MOTAD utilizes linear 

programming techniques and in the light of MaTAD's relative 

inefficiency, what are its principle advantages? Hazell [13] states 

that they are twofold: 

"First, it (MOTAD) may lead to much smaller problems 
for complex farm organizations. The quadratic program-
ming model generally invokes m+n constraints and real 
activities, but the MarAD model formulation .• . requires 
only m+s+l constraints and m+s real activities. Second, 
while quadratic progranuning does provide dual information 
on the marginal values of constraints and activities, these 
values do not hold over any specified intervals. The MarAD 
model is therefore better adapted for post-optimal ity 
analysis." 

(While we are not quite sure what Hazell means when he says "these 

values do not hold over any specified intervals", we must assume that 
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he intends to state that the range over which the dual values held 

canno t be specified a priori . Let us also note here that 

m = the number of technical constraints 

n = the number of activities 

and s = the number of observations on cash prices . ) 

I n conclusion, it is obvious that both quadratic programming and 

MOTAD have certain advantages over the other . Selection of the 

appropri ate model will thus depend upon t he objectives of the model-

bui lder and the resour ces available to him. 
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CHAPTER IV. RESULTS 

The stated objective of this paper was to develop some basic rules 

of thumb that could easily be used by the farm operator to aid him in 

his grain marketing decision. We have looked at several decision-

making models and have related them to the problem at hand. It was 

clearly evident that the portfolio model was not suited for our 

purposes because it involved the use of quadratic prograunning techniques 

which are not widely available and which require excessive amounts of 

data . The Monte Carlo and MOTAD models will also be dismissed 

because, while they don't require quadratic programming, they do call 

for a large number of computations to be performed, presumably using 

a computer. The game theory models have not been considered for the 

empirical work because, for the most part, they lack the theoretical 

justification that Bayesian procedures possess (Halter & Dean, 12, 

pp. 90-93). Finally, the maximum admissible loss approach was earlier 

proven to be internally inconsistent when used in the marketing frame-

work. The empirical work will consist of simplifying the procedure 

used by G-M to obtain the posterior probability distributions and 

also to eliminate the need for breaking the distribution of states 

of nature into discrete units. 

Our procedure involves deriving the means and variances of the 

posterior distributions under the assumption that the true states of 

nature and the forecasted states of nature are continuously distributed. 

If we further assume that historical cash prices (the states of nature) 
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and the forecasted prices are approximately jointly distributed as 

a bivariate normal, it can be shown that the posterior distribution 

is also normally distributed. The rudiments of this derivation 

fo llow hereafter . (For a more detailed derivation, see Morrison, 

23, pp. 84-97.) 

Given that states of nature, s, and forecasted states of nature, 

z, are jointly normally distributed, their joint density function is 

given by t he expression 

where 

(4.1) 1 f(s, z) = ------
2'1TO 0 / l-p2 

s z 

z - µ 

exp 

z u = ---
a z 

and p correlation coefficient 
between s and z 

v = 

In order to arrive at an equation for the posterior density function 

we must note that 

(4.2) f(s l z) f~) 

f (z) 

where f(z) = _ l exp [- ~
2
J 

CT fi:rr z 

if we assume that z is a normally 
distributed random variable 

At this point, we should discuss the plausibility of assuming z to 

be normally distributed. G-M showed in his dissertation that all of 

the forecasting models other than the MAPM model had values of central 

tendency not significantly different from the break-even prices for all 
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months of the marketing season and for bo th commodities . He also 

showed that the variances of the forecasts were not significantly 

different than the variances of the corresponding cash prices for all 

but the MAPM model (G-M,10, pp. 121-25). In order to determine 

whether the forecasted prices are normally distributed, therefore, 

we must measure the skewness and kurtosis of each distribution. 

Skewness is a measure of the degree of deviation from synunetry 

for a given distribution. Since we are interested with the distribu-

tion of forecasted prices about the bepi, we will be concerned with 

measuring the skewness of the uij distribution where uij = zij - bepi. 

(zij refers to t he forecasted price for the i-th month using the j-th 

forecasting model). The usual test of skewness is obtained by 

calculating the Pearsonian coefficient of skewness . Snedecor and 

Cochran (26) have shown, however, that it is not strictly applicable 

to distributions whose numbers of observations are less than 150. 

Mood, Graybill and Boes (22) have derived a measure of skewness which 

can be applied to small samples. Their measure of skewness, s, is 

defined ass= (mean-median)/(standard deviation). s takes on a value 

of zero when the distribution is completely symmetric bell-shaped 

(such as a normal distribution) and -1 ~ s ~ 1. The values of s for all 

zij and for both commodities were calculated and appear in Tables 

4.1 - 4.4. 

Kolstoe (16) describes an absolute value of s greater than 0.20 

as indicating a "moderate" amount of skewness. With the exception of 

the MAPM model (and perhaps the CBT-F model) virtually all of the 
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Table 4 .1. Test of skewness and kurtosis of the uij (u1 . = FP.(ph.) - bep1) distributions of 
J J ]. 

the months of the 

Month of 
marketing Corn 

November 
December -0.1540 
January -0.1344 
February -0.1440 
March -0.1933 
April -0.2206 
May -0.1973 
June -0. 04 71 
July 0.0426 
August 0.1527 
September 0.0259 

Null Hypothesis 

Tolerance 

marketing season for the TPM model 

Skewness (s) 

H : s = 0 
0 

-1 ~ s !£ 1 

Soybeans 

-0.1933 
-0.1096 
-0.1633 
-0.0505 
-0.0302 
-0.0366 
0.0373 
0.0969 
0.0561 
0.1664 

Corn 

0.8058 
0.6736 
0.6002 
0.5650 
0. 5 236 
0.5299 
0.5056 
0.5622 
0.5879 
0 . 6266 

Kurtosis (a) 

H : a = 
0 

Upper 1% 
Lower 1% 

Soybeans 

0.653 3 
0.5175 
0.4967 
0.4591 
0.4354 
0.5165 
0. 4611 
0.451 ~ 

0.5055 
0.5049 

0.80792 
0.9001 

= 0.6950 

v-
'° 
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Table 4.2. Test of skewness and kurtosis of the uij (uij = FPj(ph1) - bep1) distributions of 
the months of the marketing season for the MAPM model 

Month of Skewness (s) Kurtosis (a) 
marketing Corn Soybeans Corn Soybeans 

November -0.2039 0.5865 
December -0 . 3036 -0 .1879 0. 6072 0.5891 
January -0.2534 -0.2231 0.6073 0.6068 
February -0 .2810 -0.2157 0.6106 0.6001 
March -0.2968 -0.2264 0 . 6201 0.6057 
April -0 .3082 -0.2862 0 .6330 0.6156 
May -0.3043 -0 .2164 0 .6289 0. 5969 
June -0 .2809 -0.1531 0.6255 0.5787 
July -0 .2618 -0 .1811 0.6264 0. 5715 
August -0.2560 -0.2448 0.6270 0.5856 
September - 0.2960 0 .6251 

Null Hypothesis H : s = 0 H : a = 0.80792 
0 0 

Tolerance -1 ~ s :$ 1 Upper 1% 0.9001 
Lower 1% = 0.6950 

a-
0 
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Table 4.3. Test of skewness and kurtosis of the uij (u1 . = FP.(ph.) - bep.) distributions 
J J 1 1 

of the months of the marketing season for the TVLM model 

Honth of Skewness (s) Kurtosis (a) 
marketing Corn Soybeans Corn Soybeans 

November -0.0359 0 . 5576 

December 0.0881 0 .0049 0.5930 0 . 5642 

January 0.0140 -0.0644 0.6045 0.5729 
February 0.0095 -0.0280 0.6034 0.5847 

March 0.0315 -0 . 0343 0.6201 0.6135 
April -0.0139 -0.0748 0.5589 0.6178 
May 0.0027 0.0976 0.5553 0.7004 O'I ...... 

June 0.0923 0.1812 0.5843 0.5825 

July 0 .1183 0.0932 0.5929 0.6539 
August 0.3028 0.5739 

Null Hypothesis H : s = 0 H : a = 0.80792 
0 0 

Tolerance Upper 1% = 0.9001 -1 5. s ~ 1 
Lower 1% = 0 . 6950 
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Table 4 . 4. Test of skewness and kurtosis of the uij (uij = FPj(Ph1) - bepi) distributions of the 
months of the marketing season for the SEM and CBT-F models 

Month of 
marketing 
November 
December 
January 
February 
March 
April 
May 
June 
July 
August 
September 

Month of 
marketing Corn 
November 
December 0.2328 
January 
February 
March 0.1056 
April 
May 0.1043 
June 
July -0.4495 

Null Hypothesis 

Tolerance 

Skewness (s) 

H : s = 0 
0 

-1 s s ~ 1 

SEM Model 
Skewness (s) 

Corn 

0.0796 
0.0240 
0.0309 
0.0056 

- 0 . 0186 
0.0062 
0.0723 
0.2164 
0.3043 
0.2517 

CBT-F Model 

Soybeans 
0. 0779 

-0.0681 

-0.2264 

-0.3538 

-0.3899 

Corn 

0.6745 

0.7073 

0.6990 

0.6889 

Kurtosis 
Corn 

0.5943 
0.6006 
0. 5972 
0.5870 
0.5615 
0.5608 
0.5858 
0.5927 
0.5660 
0 . 6370 

Kurtosis (a) 
Soybeans 
0.5133 

0.6182 

0.6759 

0. 7121 

o. 7669 
H : a = 0 .80792 

0 

Upper 1% = 0.9001 
Lower 1% = 0.6950 

(a) 

°' N 
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calculated S values fall below this level. Because of the successful 

testing of the uij means and variances, we fail to recognize 

significant amounts of skewness in the forecasted prices except in 

the case of the MAPM model. 

Also reported in Tables 4.1 - 4.4 is a value for~' the measure 

of kurtosis. Kurtosis is a measure of the relative flatness or 

peakedness of a distribution. R. C. Geary [ 8] has developed a 

criterion for testing kurtosis in samples containing less than 200 

observations. He computes!!_ as !!_ = (mean absolute deviation)/(standard 

deviation). For 21 observations, the expected value of!!_ is 0 . 80792. 

Distributions that are more peaked (leptokurtic) than the nonnal 

distribution are characterized by lower values of a while flatter 

(platykurtic) distributions have larger values. These a coefficients 

were computed for all the uij distributions for each commodity. 

In virtually all cases, the value of a is significantly below its 

expected value . This implies that the distributions of forecasted 

prices about the bep. are more peaked than would be true of a normal 
1 

distribution. G-M has shown [13, p. 97) that the u. distribution for 
i 

cash prices is also leptokurtic and he surmises that this may be due 

to the inclusion of some highly abnormal marketing years in the 

sampl e . The corresponding abnormal prices tend to fall into the 

tails of the ui distribution which gives these observations dis-

proportionate weight . It would seem that the effect of these abnormal 

prices would be transmitted to the distribution of the forecasted 
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prices since they are used directly in the computation of most of the 

forecasts . 

While it seems that the forecasted price distributions are more 

peaked than would be expected of a normal distribution, we feel that 

the computational benefits derived from the assumption of normality 

may well outweigh the problems. Therefore, we can continue the 

derivation as 

(4 . 3) f(slz) 
1 

-;:--z 
21ra a 11-p s z 

exp [-
1 

2 2(1-p ) 
2 21 (u -2PUV + V ) 

1 
2 2(1-p ) 

(v - 2puv + P u ) 2 2 2 l 
1 exp [- ~ ( ~-l-ppu 2)

2 J a ~(/i-p2) s 

[ 
( 

s-µ z-µ ) ] 
1 1 Oss_Pazz 2 

= ~~~~~~ exp - -
a &Cll-p 2) 2 l1-p2 s 

1 

f 
1 (s-µs -

exp - 2 
a 

- s 
a /2;(/i-p2) 

s 

This is the probability density function for a normal random variable 

with mean 
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(4. 4) = µ + p(a l a )(z - µ ) s s z z 

and variance 

(4.5) 2 2 2 a slz 
= (J (1 - p ) s 

If we take s to approximate µ s and z to approximate µz and we 

also allow various marketing periods to be identified by subscript i, 

then we can compute the posterior means and variances as 

(4. 6) 

(4. 7) 

Having this information for the expected value of the posterior 

distribution, we can now circumvent the tedious procedure of computing 

the value of f(sjz) for several values of sand then finding the 

expected value. (We can, therefore, omit the computations required 

by equations (3.7) to (3.11).) It also allows us to obtain the mean 

value of the continuous distribution without having to break the 

distribution of states of nature into discrete units. 

Before computing the parameters of f(sjz) we can simplify 

expression (4. 6) somewhat by noting that 

(4.8) pi (a l a ) 
Si Zi 

= B i 

where (s - s> = Bi (zi zi> + Ci i 

Bi is a simple regression coefficient. Therefore, computation of 
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µ I can be obtained using 
Si Zi 

(4.9) 

If we take historical cash prices to define the prior distribution of 

states of nature and historical forecast data to define the distribution 

of forecasts, we can now make straightforward computations of the 

posterior means and variances. 

The first step in the procedure involves the computation of the 

Bijk for all combinations of forecasts, months of the marketing season 

and commodities. For this purpose we have used the data provided by 

G-M in his earlier doctoral work (G-M,10, pp. 64-65, 67-68, 72-73, 

78, 85, 170-173). 

Simple linear regressions of the form 

where 

CPik cash price of commodity kin marketing period phi 

CPik mean of CPik over the sample period (1955-56 to 1976-77) 

zijk = the forecast of CPik using forecasting model j 

zijk mean zijk over the sample period 

were run to obtain the Bijk' The G-M thesis considered two commodities, 

corn and soybeans, and ten marketing periods (months) for each 

commodity. It also made use of five forecasting models (TPM, MAPM, 

TVLM, SEM and CBT-F) for corn and four forecasting models (TPM, MA.PM, 

TVLM and CBT-F) for soybeans. (The SEM model was not formulated for 

soybeans because of a lack of data.) Since we used all of his data in 
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our empirical work, this yielded 77 Bijk values which are listed in 

Tables 4.5 - 4 . 9. All were different from zero at the 95 percent level 

of significance. 

Sample statistics for si, zi "2 and a s. 
1 2 historical data. The statistic R , which 

were obtained from the 

was used as t he measure 

2 of p , was taken from the regression output. In order to make direct 

comparisons with G- M's results, the computation of the posterior means 

and variances were carried out for the 1976-77 marketing season. 
2 

Given values for sik' zijk' Bijk' Rijk 

1976-77 forecast value, z .. k (see Table 1J 
can be calculated over all i, j and k. 

"2 and a as well as the actual 
s.k 

1 2 
4.10), µ I and a I 

sijk zijk sijk zijk 
These values for the means 

and variances can be found in Tables 4.5 - 4.9. 

As we have pointed out earlier, however, the relevant statistics 

involve not the posterior means and variances of f(silzi) but, rather, 

the means and variances of f(G . lz . ). In other words, the farmer is 
1 1 

interested in his net return and not his gross return. A high cash 

price later in the marketing season will induce him to store his crop 

only if the gain in price per bushel is a t least enough to offset his 

added storage and opportunity costs. It is apparent, therefore, that 

we must determine expected gains as well. 

We have seen before that Gi = CPi - bepi. Since the bepi are 

constant for any given i in the marketing season in question, the 

subtraction of bepi from CPi has the effect of merely shifting the 

mean of f(silzi) while the variance remains the same, i.e., 

(4.10) 
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Table 4.5 . Summary statistics for the TPM forecasting model - 1955- 56 to 1976-77 

si z1 
... "'2 ... 2 

E(Silzi) E(s1 1zi) 2 E(G1 1zi) E(G1 izi) 2 Corn Bi pi C1 s 
Month of marketing i 
December 1.3136 1.3059 0.9532 0.9762 0 . 3920 1.9848 0.0093 -0.1081 0.0093 
January 1. 3273 1.3154 0.8887 o . 9130 0.3827 2.0068 0.0333 - 0 .1340 0.0333 
February 1.3250 1.3132 0. 8133 0.8228 0.3786 1. 9974 0.0671 -0.1876 o. 0671 
March 1 . 3095 1. 3054 0 . 7681 0.7637 0.3405 1.9582 0.0805 -0.2658 0.0805 
April 1. 3377 1. 3264 0.8064 0.8231 0 . 2862 1. 9857 0.0506 -0. 2774 0.0506 
May 1. 3841 1.3782 0.7569 0.7826 0.2959 2.0818 0.0643 -0. 2205 0.0643 
June 1.4241 1. 4241 0 . 6804 0.7089 0.3140 2 .0881 0.0914 -0. 2535 0 . 0914 
July 1.4327 1.4441 0.6465 0.6698 0.3687 2 .1089 0.1217 -0 . 2721 0.1217 
August 1.4559 1.4764 0.6326 0.6626 0.5109 1 . 9832 0.1724 -0.4372 0.1724 
September 1.4095 1.4273 0.6124 0.6351 0.4231 1.9501 0.1544 -0 .5099 0.1544 

Soybeans 0\ 

Month of marketing ()) 

November 3.0091 2 .9986 0.9629 0.9675 2.1417 5. 3214 0 . 0696 -0 .5948 0.0696 
December 3,0705 3.0432 0 . 8928 0.9026 2.2461 4. 924 7 0. 2188 -1.0730 0.2188 
January 3.1064 3.0668 0. 7780 0.7995 2.0153 4. 86 72 0.4041 -1. 2073 0.4041 
February 3.1809 3 . 1345 0.6470 0.6361 2 .1726 4.6143 0.7906 -1.5293 0.7906 
March 3.2414 3 . 1541 0.5946 0.5046 2.4555 4. 5114 1. 2165 -1. 7016 1. 2165 
April 3.3409 3.1755 0.6450 0.4176 3 .1397 4.7564 1.8286 -1.5263 1.8286 
May 3.4350 3. 2714 0.4553 0.2565 3. 7911 4.5863 2.8187 -1. 7663 2 . 8187 
June 3. 5277 3.4000 0 .3653 0 .1877 4.6464 4.8757 3. 7743 -1.5472 3. 7743 
July 3.3841 3.3254 0.4998 0.4239 2. 8156 5.5255 1.6221 -0. 9679 1.6221 
August 3.4909 3.4928 0 . 4800 0.4043 4.0641 5.1744 2.4210 - 1.3898 2.4210 
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Table 4.6. Summary statistics for the MAPM forecasting model - 1955-56 to 1976-77 

.... "2 .... 2 
E(Si I Zi) E(Si!Zi)

2 
E(Gi!Zi) 

2 Corn Si z. Bi pi as E(Gi lzi) 
Month of marketing ]. i 

December 1. 3136 1.1769 1. 2787 0.3801 0 . 3920 2.4300 0.2430 0.3372 0 . 2430 
January 1. 3273 1 . 1896 1.3523 0.4190 0 .3827 2.4854 0.2224 0.3446 0.2224 
February 1. 3250 1 . 1858 1. 3769 0.4334 0 . 3786 2.5067 0.2145 0.3217 0 . 2145 
March 1. 3095 1 . 1854 1. 4265 0.4588 0 . 3405 2.4687 0.1843 0 . 2447 0 .1843 
April 1. 3377 1.2134 1.4352 0.4584 0.2862 2 . 3977 0.1550 0.1346 0.1550 
May 1.3841 1. 2573 1.3910 0 . 4606 0 . 2959 2.4923 0.1596 0.1900 0.1596 
June 1.4241 1. 2944 1. 2990 0.4604 0.3140 2. 5719 0.1694 0.2303 0 .1694 
July 1. 4327 1.3025 1.1334 0 . 3627 0 . 3687 2.5519 0.2350 0.1709 0 . 2350 
August 1 . 4559 1.3209 0.8763 0.2428 0.5109 2.5102 0.3869 0.0898 0.3869 
September 1.4095 1. 2860 0.9274 0.2478 0.4231 2.4018 0.3183 ~ .0582 0 .3183 

°' Soybeans \0 

Month of marketing 

November 3 . 0091 2.6036 1.5918 0 . 5387 2.1417 6. 2729 0.9880 0.3567 0.9880 
December 3.0705 2.6611 1. 5787 0 . 5605 2.2461 6.4030 0.9872 0.4053 0.9872 
January 3 . 1064 2.6931 1.6626 0.6344 2.0153 6.4364 0 . 7368 0.3619 0.7368 
February 3.1809 2.7637 1. 5275 0.6159 2 .1726 6.4655 0 .8345 0.3219 0.8345 
March 3. 2414 2.8077 1. 5929 0.6042 2. 4555 6.6316 0 . 9719 0 . 4186 0. 9719 
April 3.3409 2.8417 1. 9578 0.6464 3 .1397 7.4059 1.1102 1.1232 1.1102 
May 3.4350 2.9214 1.6091 0.5204 3.7911 7.2849 1.8182 0 . 9323 1.8182 
June 3.5277 2.9855 1.3526 0.4404 4.6464 7.4888 2 . 6001 1.0659 2.6001 
July 3.3841 2.8856 1.5029 0.6896 2.8156 7.4636 0.8740 0.9702 0.8740 
August 3 . 4909 3.0027 1.0172 0 . 3847 4 . 0641 6.9649 2.5006 0.4007 2.5006 
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Table 4.7. Sunnnar y statistics for the TVLM forecas ting model - 1955-56 to 1976-77 

si 
A2 A2 

E(Sijzi) 
2 2 Corn z. Bi pi OS E(Silzi) E(Gilzi) E(Gi lzi) 

Month of marketing 1 i 

December 1.3136 1.3082 0.6437 0.5740 0.3920 2.6408 0.1670 0.5480 0.1670 
January 1. 3273 1.3136 0 . 6681 0.6088 0 . 3827 2.6945 0.1497 0.5537 0 .1497 
February 1. 3250 1. 3118 0.6695 0.6118 0.3786 2. 6896 0.1470 0.5046 0.1470 
March 1.3095 1.3145 0.6954 0.6409 0.3405 2.6485 0 .1223 0 .4245 0.1223 
April 1. 3377 1.3136 0. 7197 0 . 6880 0.2862 2 . 6666 0.0893 0.4035 0 . 0893 
May 1.3841 1.3686 0 . 6987 0 . 6939 0.2959 2.7336 0.0906 0.4313 0.0906 
June 1.4241 1.4241 0.6796 0.6943 0.3140 2.7329 0.0960 0.3913 0 . 0960 
July 1.4327 1.4536 0.6031 0.5838 0.3687 2 . 6790 0.1535 0.2979 0 .1535 
August 1.4559 1. 5136 0.5280 0.4834 0.5109 2.5153 0.2639 0.0949 0.2639 

Soybeans -..J 

Month of marketing 0 

November 3.0091 2.9618 0 . 7250 0 . 6225 2.1417 5.8280 0.8085 -0. 0882 0.8085 
December 3 . 0705 3 . 0223 0.7379 0.6464 2.2461 5.6146 0.7942 --0. 3831 0 . 7942 
January 3 . 1064 3.0409 0.7929 0.7200 2.0153 5.6430 0.5643 -0 . 4315 0.5643 
February 3.1809 3 .1296 0.7559 0.6771 2 . 1726 5.2599 0 . 7015 -0.8837 0.7015 
March 3.2414 3.1499 0 . 7571 0 .5883 2 .4555 4.9904 1.0109 -1.2226 1.0109 
April 3.3409 3.1627 0.8453 0.5190 3.1397 5.2575 1.510 2 -1.0253 1 .5102 
May 3 . 4350 3. 2877 0.6452 0.3500 3.7911 4.7011 2.4642 -1.6515 2. 4642 
June 3.5277 3 . 4341 0.5781 0 . 3282 4.6464 5.0573 3 .1215 -1. 3656 3.1215 
July 3.3841 3.3227 0.7866 0.7428 2.8156 6.4340 o. 7242 -0 .0594 0.7242 
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Table 4.8. Summar y statistics for the SEM forecasting model - 1955- 56 to 1976- 77 

A2 A2 
E(Si I Zi) 

2 2 Corn Si zi ei pi as E(Si , Zi) E(Gi , Zi) E(Gi jzi) 
Month of marketing i 

December 1.3136 1.3134 0.6361 0.5633 0.3920 2.6364 0 .1712 0.5436 0.1712 
January 1. 3273 !. 3179 0. 6671 0 .6114 0.3827 2.6833 0.1487 0.5424 0.1487 
February 1.3250 1. 3134 0.6749 0.6147 0.3786 2.6764 0.1459 0 . 4914 0.1459 
March 1.3095 1.3034 0.7061 0.6505 0.3405 2.6503 0.1190 0 . 4263 0 .1190 
April !. 3377 1. 3128 o. 7158 0 . 6819 0.2862 2.6629 0 . 0910 0.3998 0.0910 
May 1.3841 1. 3703 0.6964 0.6946 0.2959 2.7311 0.0904 0.4288 0.0904 
June 1.4241 1.4274 0.6742 0 . 6988 0.3140 2.7334 0.0946 0.3918 0.0946 
July 1.4327 1.4570 0.6000 0 . 5913 0 . 3687 2.6744 0.1507 0. 2934 0.1507 -...J 

August 1.4559 1.5201 0.4940 0.2585 0.0989 0.2585 
..... 

0. 5271 0 . 5109 2.5193 
September 1.4095 1.4977 0.5217 0 .4720 0.4231 2.4318 0.2234 -0 .0282 0.2234 
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Table 4.9. Summar y statistics for the CBT-F forecasting model - 1955- 56 to 1976-77 

A -. 2 A2 
E(silzi) E(Silzi)

2 
E(Gi lzi) 

2 Corn Si zi Si pi OS E(Gi !Z1) 
Month of mar keting i 

December 1. 3136 1 . 3155 0 .8854 0 . 9796 0.3920 2.2030 0.0080 0 .1102 0.0080 
March 1. 3095 1. 3318 0 . 7963 0.8899 0.3405 1.8894 0.0375 - 0 . 3346 0 . 0375 
May 1.3841 1. 4250 0.7443 0.9292 0 . 2959 2.0651 0 . 0210 -0 . 2372 0.0210 
July 1.4327 1.4168 0.8681 0.8613 0.3687 1. 9911 0.0511 - 0 . 3899 0. 0511 

Soybeans 
Month of marketing 

November 3.0091 3.1446 0.7111 0 . 6049 2.1417 4. 9471 0.8462 -0. 9691 0.8462 -..J 
January 3.1064 3.0655 0 . 8757 0 . 8957 2.0153 5 . 5360 0.2102 - 0 . 5385 0 . 2102 N 

March 3 . 2414 3.2100 0 . 7525 0.6026 2 . 4555 5 . 0926 0 .9758 -1.1205 0.9758 
May 3.4350 3.0064 0 . 8417 0.4471 3.7911 5.7359 2.0961 -0.6167 2 .0961 
July 3 . 3841 3.0023 0.8487 0.6127 2.8156 5.6482 1.0905 -0 . 8452 1 . 0905 
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Table 4.10. Cash prices and forecasted values for the 1976-77 marketing season 

Corn CPi be pi Forecasts 
Month of marketing TPM MAPM TVLM SEM CBT-F 

December 2.22 2.0928 2 .01 2.050 3.37 3.3930 2.32 
January 2.31 2.1408 2.08 2 .046 3.36 3 . 3505 
February 2.30 2.1850 2.14 2.044 3.35 3.3158 
March 2.28 2.2240 2.15 1.998 3.24 3.2023 2.06 
April 2.27 2.2631 2.13 1.952 3.16 3.1641 
May 2.20 2. 3023 2.30 2 . 054 3.30 3.3045 2.34 
June 2.09 2 .3416 2.40 2.178 3.35 3.3694 
July 1.84 2 . 3810 2.49 2.290 3.52 3.5265 2 . 06 
August 1. 56 2.4204 2. 31 2.524 3.52 3.5375 
September 1.59 2.4600 2.31 2.356 3.4572 

'-l 

Soybeans w 

Month of marketing 

November 6.06 5.9162 5.40 4.654 6.85 5.87 
December 6.54 5. 9977 5.12 4. 772 6.47 
January 6. 71 6 . 0745 5.33 4.696 6.24 5.84 
February 6 .89 6.1436 5 . 35 4.914 5.88 
March 7. 71 6.2130 5. 29 4.936 5.46 5.67 
April 9 . 31 6 . 2827 5 . 37 4.918 5 . 43 
May 9.20 6.3526 5.80 5.314 5 . 25 5.74 
June 8 .40 6.4229 7. 09 5.914 6 . 08 
July 6.76 6 . 4934 7.61 5.600 7.20 5 . 67 
August 5 . 42 6.5642 7.00 6.418 
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( 4 .11) 

The results of these computations for each forecasting model are also 

presented in Tables 4.5 - 4.9. 

Comparison of Results to Those Obtained by 
G-M and to Actual Gains 

Comparison of our results with those of G-M is necessary in order 

to give some perspective to our results. There are several sources 

which may have an effect on the compatibility of the results. The 

first source of discrepancy lies in the fact that our results have 

been based on a Bayesian DATA approach using data priors. In his 

thesis, G-M postulated three models - NONDATA with nondata priors, 

NONDATA with data priors and DATA with nondata priors. In his DATA 

model, he utilized four nondata priors. I,O,N, and P, as outlined 

earlier . We will limit our comparisons to G-M's DATA model with 

nondata prior "I" because this is the prior which assumes normality 

of the states of nature. The second cause of differences in the 

results comes about because of our specification of the distribution 

of states of nature as continuous rather than discrete, as G-M did. 

Recall that G-M made the assumption that states of nature were normally 

distributed and that he then broke the distribution into five equally 

likely intervals. He proceeded to use the cash price at the midpoint 

of each interval when arriving at values for the expected cash price 

and the expected gain. This, in essence, forced him to describe the 

distribution of states of nature as being made up of five discrete 

values. Since our derivation treats the distribution as being 
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continuous within some feasible range, this may cause a distortion in 

our results. Finally, we are confronted with one more possible source 

of discrepancy in our results. We have, as a simplifying assumption, 

assumed that cash prices and forecasted prices are jointly distributed 

as a bivariate normal and that forecasted prices are normally 

distributed. We have done this in order to arrive at our stated 

objective - to simplify the computations needed to obtain the Bayesian 

results. Although our statistical justification for this assumption 

may be lacking, we are hopeful that the ease of computation and the 

reliability of the results will justify this assumption . 

The expected gains derived from our procedure, G-M's procedure 

and the actual gains for the 1976-77 marketing season are presented 

in Tables 4.11 and 4.12. The results for corn in Table 4 . 11 show 

that the largest actual gain observed in 1976-77 occurred in January. 

At that time , the farmer could have made a marketing gain of $0 .169 

per bushel. It should also be noted that gains show a steady decline 

in all months following January. In our formulation of the posterior 

means, the Bayesian decision (the month with the largest expected 

gain) was to market the corn in December in two cases and in January 

in two other cases. These are the two months in which actual gains 

were highest . Only the TPM model indicated marketing at some other 

time, namely at harvest. Had the farmer heeded advice from the TPM 
' 

he would have received no gain from marketing. The marketing 

decisions indicated by our procedure coincide with those of G-M in 

two instances. Both procedures yielded a Bayesian decision to market 
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Table 4.11 . Actual gains and forecasted gains for the 1976-77 
marketing season for corn 

Forecasts 
TPM MAPM 

Month of Actual G-M' s Our G-M' s Our 
marketing a b model model c model gain model 

December 0.127 -0.1658 -0.1081 - 0.0152 0 . 3372 
January 0 . 169 -0.0276 -0.1340 -0.2034 0.3446 
February 0.115 o. 7767 -0.1876 -0.1871 0 . 3217 
March 0.056 0.4315 -0.2658 -0.0284 0.2447 
April 0.007 -0.5560 -0.2774 -0.4658 0.1346 
May -0.102 0.5366 -0.2205 -1. 3551 0.1900 
June -0.252 -0.1277 -0.2535 0.1951 0.2303 
July -0 . 541 0.3554 -0.2721 0.0000 0.1709 
August -0.860 -0.5024 -0.4372 0 .8929 0.0898 
September -0.870 -1.5471 -0.5099 -1. 54 71 -0.0582 
Bayesian 
Decision Jan. Feb. Nov. Aug. Jan. 

a Actual gain computed as CPi-bepi using actual cash prices for 
1976-77 (G-M, 10, p. 146). Values for August and September were 
calculated by myself. 

b(G-M, 10, p. 137). 

c(G-M, 10, p. 139). 

d(G-M, 10, p . 141). 

e(G-M, 10 , p . 143) . 

f(G-M, 10 , p. 144). 
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Forecasts 
TVLM SEM CBT-F 

G-M' s Our G-M' s Our G- M's Our d model modele model f model model model 

0 . 5518 0 . 5480 0 .4634 0.5436 0.2518 0 . 1102 

-0 . 8541 0 . 5537 -0.8542 0 . 5424 
-0 . 3020 0.5046 -0 . 3020 0.4914 
- 0.0817 0.4245 -0. 2093 0 . 4263 - 0.2372 -0.3346 

0.0186 0 .4035 -0.0000 0.3998 
0 .1282 0.4313 0.1282 0.4288 0.1733 -0. 2372 
0.0168 0.3913 0.0152 0.3918 
0 . 1330 0 . 2979 0.1328 0.2934 -0 . 2812 -0 . 3899 

-0.2539 - 0 . 0949 0 . 1745 0.0989 
0 . 0000 -0 . 0282 

Dec . J an . Dec . Dec. Dec. Dec . 
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Table 4.12 . Ac tual gains and forecasted gains for the 1976- 77 marketing season for soybeans 
Forecasts 

TPM MA.PM TVLM CBT-F 
Month of Ac tual G-M ' s Our G- M's Our G- M's Our G-M 's Our 
marketing gai~ modelb model modelc model modeld model modele model 

November 0.144 0.3889 -0 . 5948 - 0.8409 0 . 3567 0.7416 -0.0882 0 . 2803 -0.9691 
December 0 . 54 2 0.6456 -1. 0780 1.1452 0.4053 -1.5256 -0.3831 
January 0.636 1 . 5083 -1.2073 - 0.5143 0 .3619 0 .0817 - 0.4315 0.5381 - 0.5385 
February 0 . 746 1 . 4141 -1. 5293 -0.6113 0.3219 -1.6322 -0.8837 
March 1.497 0.4367 -1. 7016 - 0.6760 0.4186 0.5391 - 1. 2226 1. 2119 -1.1205 
April 3.027 0 .1951 -1.5263 1.1436 1.1232 0.4584 -1. 0253 
May 2.847 0.3345 -1 . 7663 -0.5143 0.9323 - 1.1790 - 1.6515 -0.5372 -0.6167 
June 1.977 0.0000 -1. 54 72 2 . 6849 1.0659 -1. 2505 -1.3656 
July 0 . 267 0 . 7636 -0.9679 1.6392 0.9702 o. 7201 - 0.0594 -0.0152 - 0.8452 
August - 1.144 1. 7722 -1.3898 0.3023 0.4007 
Bayesian 
Decision Apr. Aug. Oct. June Apr. Nov. Oct. Mar. Oct. ....., ....., 

a Actual gains computed as CPi-bepi using actual cash prices for 1976-77 (G-M 10, p. 146). 
Value for August was computed by myself. 

b (G-M,10, p. 138). 
c (G-M ,10 , p. 140). 
d (G-M,10, p . 142). 
e (G-M,10, p. 144). 
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in December for the SEM and the CBT-F forecasting models . The 

differences in results for the optimal time of marketing indicated by 

the TPM and TVLM models were quite small. The differences in results 

under the MAPM model were quite large, however. G-M's procedure 

yielded a Bayesian solution of August for the MAPM model while ours 

indicated January as the optimal month. The farmer following the 

MAPM decision under G-M's approach would have lost $0.86 per bushel 

given the break-even prices computed by G-M. Had our procedure been 

used, however, the farmer would have stood to make $0.169 per bushel -

a difference of $1.029 per bushel due to the differing results of the 

two procedures. If a farmer would have marketed equal amounts of corn 

in each of the months indicated by the five models under G-M's 

procedure, he would have lost $.0728 per bushel, Under our procedure, 

he would have made a marketing gain of $.1184 per bushel. 

As can be seen in Table 4.12, the maximum actual gain for soybeans 

occurred in April when marketing gains reached $3.027 per bushel . Our 

procedure indicated October, the month of harvest, as the time to 

sell according to three of the four forecasting models. The MAPM 

Bayesian decision was to market soybeans in April. In contrast, G-M's 

procedure yielded a different month for each model. Three of the 

models - MAPM, which indicated June, TVLM, which indicated November 

and CBT-F, which indicated March - would have allowed the farmer to 

realize positive marketing gains. However 1 his TPM result, indicating 

August as the optimal time to sell, would have brought about a $1 .144 

loss per bushel due to marketing. Equal amounts of soybeans marketed 
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in each of the months indicated by the four models under G-M' s 

procedure would have given the farmer an average gain of $0.6185 per 

bushel. Under our procedure, the average gain would have been $0.7568 

per bushel of soybeans. 

Sensitivity of bepi to Changes in 
Storage Costs and Interest Rates 

We stated earlier that the break-even prices were formulated using 

G-M's data for interest rates and storage and handling costs. It 

seems appropriate, in this time of volatile interest rates and double-

digit inflation, that we should look at the effect that changing 

interest rates, cash prices and storage costs would have on the bepi. 

First, recall that the formulation of the breakeven prices was 

done using the equation 

(4.12) 

The term CPh (l+r)i is a measure of the farmer's opportunity cost 

of holding his grain rather than selling it at the time of harvest. 

In his dissertation, G-M used interest rates paid by farmers [30) as 

his measure of r. For the 1976-77 marketing season, the annual 

rate of interest used by G-M was 8.5 percent - or .68215 percent per 

month. In Tables 4.13 - 4 . 15, we present a listing of the changes in 

the bep1 caused by interest rates ranging from 5.5 percent to 15 percent. 

We also look at how changes in CP
0 

affect the bepi. It is clear that 

the longer the grain is stored and the higher the CP , the larger is 
0 

the effect on the bep1 . For instance, a 3 percent increase in the 
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Table 4.13 . Change in bepi due to changes in the interest rate - 1976-77 marketing season 
(all values in $/bu.) 

Corn: CPO = $2.01 r 5.5% 6.5% 7.5% 9 . 5% 10.5% 11.5% 12.5% 13.5% 15% 
Month of marketing 
December -.0047 -.0031 -.0016 +.0015 +.0031 +.0046 +. 0061 +.0076 +.0099 
January -.0095 -.0063 -.0031 + .0031 +. 0062 +.0093 +.0123 +.0153 +.0198 
February -.0143 - . 0095 -.0048 +.0047 +.0094 +.0140 +.0187 +.0233 +.0301 
March - .0192 -.0128 -.0064 +.0063 +.0126 +.0189 +.0251 +.0313 +.0405 
April -.0242 - .0161 -.0080 +.0080 +.0159 +.0238 +.0316 +.0346 +.0510 
May -.0292 -.0194 -.0097 +.0096 +.0192 +.0287 +.0382 +.0477 +. 0618 
June -. 0342 -.0228 - . 0114 +.0113 +.0226 +.0338 +.0450 +.0561 +.0727 
July -.0393 -.0262 -.0131 +.0130 +.0260 +.0389 + . 0518 +. 0647 +.0839 
August -.0445 -.0296 -.0148 +.0147 +.0295 +.0441 +.0589 +.0735 +.0953 
September -.0497 -.0331 -.0165 +.0165 +.0329 +.0494 +.0659 +.0823 +.1069 

Soybeans: CP0 =$5.80 CD 
0 Month of marketing 

November -.0136 -. 0090 -.0045 +.0045 +.0089 +.0133 +.0176 +.0220 +.0284 
December - .0274 - .0182 -.0091 +.0090 +.0179 +.0268 +.0356 +.0443 +.0573 
January -.0413 -.0275 -.0137 +.0136 +.0271 +.0405 +.0538 +.0670 +.0867 
February -.0554 -.0368 -.0184 +.0183 +.0364 +.0544 +.0723 +.0901 +.1167 
March -.0697 -.0463 -.0231 +.0230 +.0458 +.0686 +.0912 +.0999 +.1472 
April -.0841 -.0559 -.0279 +.0278 +.0554 +.0830 +.1103 +.1376 +.1783 
May - .0987 -.0657 - . 0328 + . 0326 +.0652 +.0976 +.1298 +.1620 +.2100 
June -.1134 -.0755 -.0377 +.0376 +.0750 +.1124 + .1496 +.1867 +.2422 
July -.1283 -.0854 -.0427 +.0426 +.0851 +.1274 +.1697 +. 2119 +. 2750 
August -.1434 -.0955 -.0477 +.0476 +.0952 +.1427 +.1902 +.2375 +.3084 
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Table 4 .14. Change in bep. due to changes in the interest rate - 1976-77 marketing season 
1 

(all values in $/bu.) 

Corn: CP0 = $1. 50 r 5.5% 6.5% 7 . 5% 9.5% 10.5% 11.5% 12.5% 13 . 5% 15% 
Month of marketing 

December -.0036 -.0024 - .0012 +.0011 +.0023 +.0034 +.0045 +.0056 +.0073 
January - . 0071 -.0047 -.0023 +. 0024 +.0047 +.0070 +.0092 + . 0115 +.0149 
February -.0107 -.0071 -.0035 +.0035 +.0070 +.0105 +.0139 +.0174 +.0225 
March -.0143 -.0095 -.0047 +.0048 +.0095 +.0141 +.0188 +.0234 +.0302 
April -.0181 -.0131 -.0060 +. 0059 +.0118 +.0177 +.0236 +.0258 +.0381 
May - . 0218 -.0145 -.0073 + .0071 +.0143 +. 0214 +.0285 +.0356 +.0461 
June -.0255 -.0170 - . 0085 +.0085 +.0169 +.0253 +.0336 +.0419 +.0543 
July -.0293 -.0195 -.0097 +.0098 +.0195 +.0291 +.0387 +.0483 +.0627 
August -.0331 -.0221 -.0110 +.0111 +.0221 +.0330 +.0440 +.0549 +.0712 
September -.0370 -.0247 -.01 23 +.0124 +.0247 +.0369 +.0492 +.0615 +.0798 

CX> 
Soybeans: CP0 =$4.80 ,.... 
Month of marketing 

November - .0113 -.0075 -.0038 +.0037 + .0074 +.0110 +.0146 +.0182 +.0235 
December -.0227 -.0151 -.0075 +.0075 +.0148 +.0222 +.0294 +.0367 +.0474 
January -.0343 -.0228 -.0114 +.0112 +.0224 +.0335 +.0445 +.0554 +.0717 
February - . 0459 -.0305 - . 0152 +. 0151 +.0301 +.0451 +.0599 +. 0746 +.0966 
March -. 0577 -.0418 -.0191 +.0190 +.0380 + .0568 +.0755 +.0827 +.1219 
April - . 0696 - . 0462 -.0231 + .0230 +.0459 +.0687 +.0914 + .1139 +.1476 
May -.0817 -.0543 - .0271 + .0270 + . 0539 +.0807 +.1074 + .1341 +.1738 
June - . 0939 - . 0625 -.0312 +. 0311 +.0621 +.0930 +.1238 +.1545 +. 2004 
July - .1062 -.0707 - .0353 +. 0353 +.0704 +.1055 +.1405 +.1754 +. 2276 
August - .1187 -.0791 -.0395 +.0394 +.0787 +.1181 +.1573 +.1965 + . 2552 
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Table 4 .15. Change in bepi due to changes in the interest rate - 1976-77 marketing season 
(all values in $/bu.) 

Corn: CP0 = $2.50 r 5.5% 6.5% 7.5% 9.5% 10.5% 11.5% 12.5% 13.5% 15% 
Month of marketing 

December -.0059 -.0039 -.0020 +.0019 + .0038 +.0057 +.0076 +.0094 +.0122 
January -.0118 -.0078 -.0038 +.0039 +.0078 +.0116 +.0154 +.0192 +.0248 
February -.0178 -.0118 -.0059 + .0059 +.0117 +.0175 +.0232 +.0289 +.0374 
March -.0239 -.0159 -.0079 +.0079 +.0157 +.0235 +.0312 +.0389 +.0503 
April -.0300 - .0217 -.0099 + .0100 +.0198 +.0296 +.0394 +.0431 +.0635 
May -.0363 -.0241 -.0120 +.0120 +.0239 +.0358 +.0476 +.0593 +.0769 
June -.04 25 -.0282 -.0141 +.0141 +.0 281 +.0421 +.0560 +.0699 +.0906 
July -.0488 -.0325 -.0162 +.0162 +. 0324 +.0485 +.0645 +.0805 +.1044 
August -.0553 -.0368 -.0183 +.0184 +. 0367 +.0550 +.0732 +.0914 +.1186 
September -.0619 -.0412 -.0206 +.0205 +.0410 +.0615 +.0819 +.1024 +.1330 

Soybeans: CP0 =$6.80 
(X) 
N 

Month of marketing 

November -.0160 -.0106 -.0053 +.0053 +. 0105 +.0156 +.0207 +.0258 +.0333 
December -.03 22 -.0214 -.0106 +.0105 +. 0210 +.0314 +.0417 +.0519 +.0672 
January -.0485 -.0322 -.0161 +.0159 +.0318 +.04 75 +.0630 +.0785 +.1017 
February -.0650 -.0433 -.0216 +.0213 + .0426 + .0638 +.0848 +.1056 +.1368 
March -.0817 -.0592 -.0271 +.0269 + .0537 +.0804 +.1069 +.1171 +.1726 
April -.0986 -.0656 -.0327 +.0326 +.0650 +.0973 +.1294 +.1613 +.2091 
May -.1158 -. 0770 -.0384 +.0383 +.0763 +.1144 +.1522 +.1900 +. 2461 
June - .1330 -.0885 -.0442 + .0440 +.0879 +.1317 +.1754 +.2189 +.2839 
July -.1505 -.1002 -.0500 +.0499 +.0997 +.1494 +.1990 +. 2484 + .3224 
August -.1681 - .1120 -.0560 +.0558 +.1116 +.1673 +.2229 +. 2784 +.3615 
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interest rate (to 11.5%) would raise the hep for corn by only $.0046 

in December but would increase it by $.0494 by September given the 

actual CP of $2.01 for corn. If the harvest time cash price had 
0 

instead been $2.50 for corn, bep1 would have increased $.0057 in 

December and $ . 0615 in September. It is interesting to note that 

none of the variations in the interest rate would have affected the 

optimal time to market nor would they have affected the ordering of 

marketing decisions from best to worst. The only change would have 

been the nominal effect of increasing or decreasing the dollar 

amounts of the gains realized. The maximum amounts of these changes, 

given the actual CP values of $2.01 for corn and $5.80 for soybeans, 
0 

would have been approximately 5 cents per bushel of corn in September 

and approximately 14 cents per bushel of soybeans in August. 

The sci term in equation (4.12) is a measure of the farmer's 

actual out-of-pocket costs of storing his grain for i months. The 

value of SCi used in G-M ' s thesis is made up of two components. The 

first is a handling charge that the farmer must pay when he delivers 

his grain to the storage facility. This is a fixed cost and, as 

such, any change in handling costs would change the value of sci by 

an equal amount, ceterus paribus, for all i . 

The second component is the actual ' 'rent" that the farmer pays to 

store his grain for a certain period of time. Obviously, this 

component of SCi increases as i becomes larger. If this charge is 

calculated on a per-month basis, then any equal across-the-board 

increase in this compopent would increase SC. by an amount equal to i 
1. 
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times the increase per month. Since the 1976-77 monthly storage costs 

for corn and soybeans were in the $.025 to $.03 range after the 

initial three months, it would seem unlikely that they would change 

by much more than $ . 01/month in any given marketing season. If we 

assume that the monthly charge had increased from given levels by 

$ .01/month, this would have yielded a maximum change in the bep1 of 

$ .10 per bushel of corn in September and $.10 per bushel of soybeans 

in August. Since the marginal increase in SCi is only $.01/month, it 

would have had no effect on the actual optimal marketing period. 

Because Sci enters the bepi equation in an additive manner, only 

very large changes (relative to their 1976-77 levels) in storage and 

handling costs would have an effect on the optimal marketing time or 

on the ordering of marketing decisions. 
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CHAPTER V. SUMMARY AND CONCLUSIONS 

We have, in this thesis, looked at several alternatives for 

making decisions under uncertainty. We have investigated the use of 

Monte Carlo, portfolio, MOTAD, MALA, Bayesian and several game theory 

models. Because our objective was t o simplify the calculations 

involved in arriving at some useable results, we decided to concentrate 

our empirical work on deriving a simplified procedure to calculate the 

Bayesian posteriors. 

As mentioned throughout this paper, our work was based on a 

doctoral dissertation written by Hector Eduardo Gonzalez-Mendez. In 

his thesis, G-M developed a Bayesian decision model for corn and 

soybeans which, when coupled with some simple price forecasting models, 

generated values for expected marketing gains for each month of the 

marketing season. He did extensive work in the testing of the 

statistical underpinnings of the model and presented r esults for 

three forms of the Bayesian model. Our intentions in re-working 

G-M's model formulation were twofold . First, we wanted to derive a 

procedure for calculating the means of the DATA posterior distributions 

which would circumvent the tedious and time-consuming method outlined 

by G-M. Secondly, because we considered the distribution of states 

of nature to be continuous, we wanted a method of calculation which 

treated them as such. 

We began by assuming that cash prices (states of nature) and 

forecasted cash prices were distributed as a bivariate normal. Given 
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this assumption, we were able to show that the posterior distributions 

were normally distributed with easy-to-compute means and variances. 

We then proceeded to obtain values for the parameters involved in the 

mean and variance expressions . These took the form of some sample 

statistics as well as the slope coefficient of a simple linear 

regression. It was then possible to compile a listing of the expected 

gains to marketing for each combination of forecasting model, marketing 

period and connnodity. This done, we compared our results with those 

obtained by G-M . Many of our numerical results were significantly 

different from G-M's due, most likely, to any of three reasons . 

First, there was a difference in the basic Bayesian model employed by 

each of us. Our model was a Bayesian DATA model with data priors 

whereas G-M's most comparable model was a DATA model with nondata 

priors . In other words, our prior probabilities were based on 

historical distributions of cash prices as opposed to his priors 

which were based on farmers ' attitudes toward possible states of 

nature around the bep. ' s . The second source of difference was G-M's 
1 

breaking of the distributions of the S. into discrete units. As just 
J 

mentioned, our analysis treated this distribution as being continuous. 

The third source of variation involves our assumption of joint normality. 

While we did not justify this assumption statistically , our results 

seem to have at least given some support to the assumption. 

Assuming that a given farmer would have marketed equal quantities 

of each commodity in the months indicated by both G-M 's models and our 

models, his actual gain per bushel would have been greater under our 



www.manaraa.com

87 

formulation than under G-M's. While this is by no means an adequate 

comparison of the two different formulations, it does serve to point 

out that our procedure will yield plausible results with considerably 

less computation . 

It would be useful to make a more thorough comparison of the two 

procedur es. A method which evaluates the value of an experiment, as 

outlined by Halter and Dean (12, pp. 124-28), would seem to be a 

satisfactory method for carrying out this comparison. This method 

determines the expected value, in terms of money or utility , of the 

information used in computing the Bayesian strategy. Essentially, it 

begins by computing the expected payoff associated with the optimal 

Bayesian NONDATA strategy . The value of the additional information 

contained in the DATA model can then be computed as the difference 

between the expected payoff from the DATA model and the expected 

payoff from the NONDATA model. It would be possible to compute the 

expected payoffs under our procedure and under G-M ' s procedure to make 

a more accurate comparison. 

We have, in conclusion, derived a procedure whereby Bayesian 

Decision Theory can be applied to the farm marketing decision with a 

minimum amount of computational effort . We are hopeful that this 

will lead to the successful derivation of further rules of thumb which 

can be used by the farm operator in his marketing decision . We do 

not presume to tell the farmer when to market his grain but, rather, 

we hope to present him with information which he can use in helping 

him decide the best course of action. He is still the person who 
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assumes the risks and with whom the final decisions rest. 

We would be remiss to close this thesis without taking at least 

one verbatim quote from G-M's dissertation. It involves the areas of 

research which should be pursued in order to further the work that 

each of us has done. 

11 we recognize the need for further research in 
at least two directions; 1) we have only considered the 
marketing decision problem at harvest time, it would be 
of interest to expand the model in a way that continuous 
revision of marketing decisions is possible ... 2) .. . it 
would also be of interest to analyze many other alternative 
forecasting models and priors" (10, p. 160]. 

These are both problems that were alluded to earlier and we concur 

with G-M in stressing that further research be done in this area. 
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APPENDIX 

Reliability of the Taylor Expansion 

It is necessary to make note of the entire concept of maximizing 

utility or, more correctly, maximizing expected utility. The idea of 

expected utility enters here on the basis of the decision maker's 

confrontation with actions which will yield returns in the future; 

i . e., the individual cannot maximize actual utility because he is 

faced with an uncertain return. 

Measurement of expected utility is a problem all of its own. 

According to von Neumann and Morgenstern [32), the expected utility 

of a distribution of uncertain returns can be determined relative to 

the actual utility obtained from a return that is received with 

certainty. This can be illustrated as follows . Assume three certain 

events, A, B and C. Assume also that event A is preferred to event B 

and that event B is preferred to event C or, notationally, 

A > B > C 

If we now introduce an uncertain event composed of obtaining A with 

probability P and obtaining C with probability (1-p), the von Neumann-

Morgenstern axioms state that there exists a value of p(O 5 p ~ 1) such 

that the individual will be indifferent between the uncertain prospect 

composed of A and C and the certain prospect, B. Therefore, 

(A.l) E[u(A or C, p)] = pu(A) + (1-p)u(C) 

= u(B) 

This, then, defines the expected utility of the uncertain event, 
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given p. Note also that, knowing p and arbitrarily assigning values 

for two of the certain events, the utility of the other event can be 

determined. This process can, of course, be continued to include as 

many events or combinations of events as desired. The most important 

point to be made here, however, is to simply state what expected 

utility is and to show that it is a measurable entity. 

If states of nature are distributed as continuous variables (as 

opposed to the discrete case cited above), then estimation of the 

expected utility becomes somewhat more difficult. Assume that the 

states of nature, s, are dis tributed continuously as L(s). Assume 

also that the payoffs of action ai, the xi, are a continuous function 

of s, distributed as f(xi) . Given these assumptions, the probability 

of obtaining some xi, xia ~ xi ~ xiB' can be calculated by 

= P(s
0 

~ s ~ s
8
) 

= f8
1(s) ds 

a 

In practice, most researchers (relying on the von Neumann-

Morgenstern axioms for support) assume that a specific utility function 

exists in the form 

(A.3) u = u(x) 

or, given that action i has occurred, ui = u(xi). By appealing to the 

mathematical derivation of the expected value of a continuous variable, 

we can now obtain an expression for the expected utility of action i: 
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(A.4) E(u ) 
i 
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ai and bi define the range of variation in xi. 

In many cases 

can be integrated while 

cannot. It is because of this dilemma that researchers have turned 

to alternate methods of deriving the value of E(ui) [18). 

The most widely accepted alternative method of obtaining expected 

utility involves expansion of the utility function using the Taylor 

series. The following derivation is quoted from Decisions Under 

Uncertainty by Albert N. Halter and Gerald W. Dean [12]. 

The function u(x) can be expanded to a function in powers of 

(x-c) where x is a random variable and c is a fixed value . In 

particular, the Taylor series expansion of u(x) is: 
2 

(1) u(x) = u(c) + (x-c) d~~c) + t (x-c) 2 d ~~~) 

3 4 
+ 1

3
.' (x-c)3 d u(c) + 1 (x-c)4 d u(c) + . . .. 

dx3 "'4! dx4 

Letting c = E(x), expected gain for any action, we obtain 
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(2) u(x) 
2 

= u[E(x)] , + [x-E(x)] f~[E(x)] + !. [x-E(x)] 2 d u[E~x)] 
~ 2 ~ 

4 
+ t! [x-E(x)]4 d u[E~x)] + .••. 

dx 

Taking the expectation of each side of the equation, we obtain the 

expected utility of action a: 

(3) 
2 

u(a) = Eu(x) = u[E(x)] + .!. o2 d u[E(x)] 
2 dx2 

+ .... 

where 

the expectation of the constant E(x) = E(x), 

the expectation of x-E(x) = 0 

the expectation of [x-E(x)] 2 = 2 o i . e., the variance of the 

distribution of x, 

the expectation of [x-E(x)] 3 = g1, i.e., the skewness of the 

distribution of x, 

4 the expectation of [x-E(x)] = g2 , i.e., the kurtosis of the 

distribution of x. ([12], pp, 100-101). 

This is the Taylor series expansion about the mean. 

The problem with this procedure comes about because of the 

remainder whose existence is indicated by the dots in (3). (A remainder 
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exists because the Taylor series expansion is only an approximation to 

the true value of the function.) In general, the Taylor expansion can 

be written as 

(A . 5) f(x) = f(a) + f' (a) (x-a) + f' ' (a) (x-a) 2 

2! 

+ . .. . + f(n)(a) (x-a)n + f(n+l)Cx1) (x- a ) n+l 
n! (n+l) ! 

For some x
1

, such that a < x1 < x if x > a 

and a > x
1 

> x if x < a 

The final term of (A . 5) is the remainder. In terms of the utility 

function consider ed earlier, (A . 5) can be written as 

(A . 6) 
2 

u(x) = u[E(x)] + [x-E(x)] du[E(x)] + .!. [x-E(x)]2 d u[E(x)] 
dx 2 dx2 

for some x1 such that E(x) < x < x ] 

and E(x) > x
1 

> x 

if x > E(x) 

if x < E(x) 

Taking the expectation of (A.6) and defining the last term to be R4 
yields 
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(A.7) Eu(x) + 1 2 d2u(E(x)] 1 d3u[E(x)] u[E(x)) - a + - g 2 dx2 3! 1 dx3 

It is obvious that if the utility function is of degree four or less 

(where the degree is an integer value), then 

(A.8) R4 

d5
u since - - - 0 dx5 - . 

It is also apparent that if all moments of the distribution of payoffs 

beyond g2 are equal to zero, then R4 = 0 regardless of the degree of 

the utility function. Obviously, there is nothing magic about using 

four terms in the expansion. The same arguments concerning R are 
n 

valid for utility functions of degree n or less and distributions of 

payoffs with moments beyond gn_2 all equal to zero . 
2 

In most empirical work every term to the right of i o 2 d u[E~x)J 
dx 

is- assumed to be zero in order to simplify the problem somewhat. 

If this is the case, then utility functions of degree 3 or greater 

coupled with payoff distributions possessing some gi (i = 1, 2, .. . ) 

which are nonzero (assuming nonzero g. correspond to nonzero 
J_ 

diu/dxi) yield R I 0. In the vast majority of cases it is n 

assumed that the payoffs are normally distributed. In these cases, 
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gi I 0 when i is even and gi = 0 when i is odd. It is then possible 

to have Ru = 0 even with a cubic 
3 

~! g1 d u(~1) = 0 regardless of 
dx 

utility function. 
3 

the fact that d u I 
dx3 

Since g1 = 0, then 

0 [18). 

It is apparent that unless the assumptions concerning the degree 

of the utility function and the moments of the payoff distribution are 

met, the Taylor series expansion is only an approximation to the actual 

expected utility. If these approximations are sufficiently in error, 

it is quite possible that the indifference curves derived from them 

may yield nonoptimal decisions. 
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